1
|
Sharma V, Verma R, Singh TG. Targeting hypoxia-related pathobiology in Alzheimer's disease: strategies for prevention and treatment. Mol Biol Rep 2025; 52:416. [PMID: 40266407 DOI: 10.1007/s11033-025-10520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION Alzheimer's Disease (AD) is a neurodegenerative condition characterised by cognitive decline and memory impairment. Recent research highlights the important role of hypoxia, a state of insufficient oxygen availability, in exacerbating AD pathogenesis. MATERIALS AND METHODS Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the role of hypoxia mediated pathobiology in AD. Only peerreviewed articles published in reputable journals in English language were included. Conversely, non-peer-reviewed articles, conference abstracts, and editorials were excluded, along with studies lacking experimental or clinical relevance or those unavailable in full text. CONCLUSION Hypoxia exacerbates core pathological features such as oxidative stress, neuroinflammation, mitochondrial dysfunction, amyloid-beta (Aβ) dysregulation, and hyperphosphorylation of tau protein. These interlinked mechanisms establish a self-perpetuating cycle of neuronal damage, accelerating disease progression. Addressing hypoxia as a modifiable risk factor offers potential for both prevention and treatment of AD. Exploring hypoxia and the HIF signalling pathway may help counteract the neuropathological and symptomatic effects of neurodegeneration.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Reet Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Rao IY, Hanson LR, Frey WH. Brain Glucose Hypometabolism and Brain Iron Accumulation as Therapeutic Targets for Alzheimer's Disease and Other CNS Disorders. Pharmaceuticals (Basel) 2025; 18:271. [PMID: 40006083 PMCID: PMC11859321 DOI: 10.3390/ph18020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Two common mechanisms contributing to multiple neurological disorders, including Alzheimer's disease, are brain glucose hypometabolism (BGHM) and brain iron accumulation (BIA). Currently, BGHM and BIA are both widely acknowledged as biomarkers that aid in diagnosing CNS disorders, distinguishing between disorders with similar symptoms, and tracking disease progression. Therapeutics targeting BGHM and BIA in Alzheimer's disease can be beneficial in treating neurocognitive symptoms. This review addresses the evidence for the therapeutic potential of targeting BGHM and BIA in multiple CNS disorders. Intranasal insulin, which is anti-inflammatory and increases brain cell energy, and intranasal deferoxamine, which reduces oxidative damage and inflammation, represent promising treatments targeting these mechanisms. Both BGHM and BIA are promising therapeutic targets for AD and other CNS disorders.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - William H. Frey
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
3
|
Fine JM, Kosyakovsky J, Bowe TT, Faltesek KA, Stroebel BM, Abrahante JE, Kelly MR, Thompson EA, Westby CM, Robertson KM, Frey WH, Hanson LR. Low-dose intranasal deferoxamine modulates memory, neuroinflammation, and the neuronal transcriptome in the streptozotocin rodent model of Alzheimer's disease. Front Neurosci 2025; 18:1528374. [PMID: 39872995 PMCID: PMC11770042 DOI: 10.3389/fnins.2024.1528374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD). Methods This study was designed to probe dosing regimens to inform future clinical trials, while exploring mechanisms within the intracerebroventricular (ICV) streptozotocin (STZ) model. Results Five weeks of daily IN dosing of Long Evans rats with 15 μL of a 1% (0.3 mg), but not 0.1% (0.03 mg), solution of DFO rescued cognitive impairment caused by ICV STZ administration as assessed with the Morris Water Maze (MWM) test of spatial memory and learning. Furthermore, IN DFO modulated several aspects of the neuroinflammatory milieu of the ICV STZ model, which was assessed through a novel panel of brain cytokines and immunohistochemistry. Using RNA-sequencing and pathway analysis, STZ was shown to induce several pathways of cell death and neuroinflammation, and IN DFO engaged multiple transcriptomic pathways involved in hippocampal neuronal survival. Discussion To our knowledge this study is the first to assess the transcriptomic pathways and mechanisms associated with either the ICV STZ model or DFO treatment, and the first to demonstrate efficacy at this low dose.
Collapse
Affiliation(s)
- Jared M. Fine
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Jacob Kosyakovsky
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Tate T. Bowe
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Katherine A. Faltesek
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Benjamin M. Stroebel
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Juan E. Abrahante
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Michael R. Kelly
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Elizabeth A. Thompson
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Claire M. Westby
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Kiley M. Robertson
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - William H. Frey
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| | - Leah R. Hanson
- HealthPartners Institute, Neuroscience Research, HealthPartners Neuroscience Center, Saint Paul, MN, United States
| |
Collapse
|
4
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
5
|
Du B, Chen K, Wang W, Lei P. Targeting Metals in Alzheimer's Disease: An Update. J Alzheimers Dis 2024; 101:S141-S154. [PMID: 39422951 DOI: 10.3233/jad-240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One pathological feature of Alzheimer's disease (AD) is the dysregulated metal ions, e.g., zinc, copper, and iron in the affected brain regions. The dysregulation of metal homeostasis may cause neurotoxicity and directly addressing these dysregulated metals through metal chelation or mitigating the downstream neurotoxicity stands as a pivotal strategy for AD therapy. This review aims to provide an up-to-date comprehensive overview of the application of metal chelators and drugs targeting metal-related neurotoxicity, such as antioxidants (ferroptotic inhibitors), in the context of AD treatment. It encompasses an exploration of their pharmacological effects, clinical research progress, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Qin Y, Li S, Liang L, Zhao S, Ye F. Rational synthesis of FeNiCo-LDH nanozyme for colorimetric detection of deferoxamine mesylate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123156. [PMID: 37506456 DOI: 10.1016/j.saa.2023.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The accurate surveillance and sensitive detection of deferoxamine mesylate (DFO) is of great significance to ensure the safety of thalassemia major patients. Herein, we report a new nanozyme-based colorimetric sensor platform for DFO detection. First, a metal-organic framework (ZIF-67) was used as a precursor for the synthesis of FeNiCo-LDH (Layered Double Hydroxide, LDH) via an ion exchange reaction stirring at room temperature. The results of electron microscopy and nitrogen adsorption-desorption showed that FeNiCo-LDH exhibited a 3D hollow and mesopores structure, which supplied more exposed active sites and faster transfer of mass. The as-prepared FeNiCo-LDH showed superior peroxidase-like activity with a low Km and high υmax. It can catalyze the decomposition of H2O2 to generate reactive oxygen species (ROS) and further react with 3,3',5,5'-tetramethylbenzidine (TMB) to form blue oxidized TMB (oxTMB), which has a characteristic absorption at 652 nm. Once DFO was introduced, it can complex with FeNiCo-LDH and inhibit the peroxidase-like activity of FeNiCo-LDH, making the color of oxTMB lighter. The quantitative range of DFO was 0.8-28 μM with a detection limit of 0.71 μM. This established method was applied to the detection of DFO content in urine samples of thalassemia patients, and the spiked recoveries were falling between 97.7% and 109.6%, with a relative standard deviation was less than 5%, providing a promising tool for the clinical medication of thalassemia patients.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
7
|
Qin Y, Bai D, Tang M, Zhang M, Zhao L, Li J, Yang R, Jiang G. Ketogenic Diet Alleviates Brain Iron Deposition and Cognitive Dysfunction via Nrf2-mediated Ferroptosis pathway in APP/PS1 Mouse. Brain Res 2023; 1812:148404. [PMID: 37164173 DOI: 10.1016/j.brainres.2023.148404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Progressive cognitive decline and increased brain iron deposition with age are important features of Alzheimer's disease. Previous studies have found that the short-term ketogenic diet has neuroprotective effects in a variety of neurodegenerative diseases, but the effects of an early and long-term ketogenic diet on brain iron content and cognition of Alzheimer's disease have not been reported. In our study, 8-week-old APP/PS1 mice were given a 12-month ketogenic or standard diet, while C57BL/6 mice matched with the age and genetic background of APP/PS1 mice were used as normal controls to be given a standard diet for the same length of time. We found that 12 months of an early ketogenic diet improved the impaired learning and memory ability of APP/PS1 mice. The improvement of cognitive function may be related to the reduction of amyloid-beta deposition and neuronal ferroptosis. The mechanism was achieved by the regulation of ferroptosis-related pathways after activation of nuclear factor erythroid 2-related factor 2 by ketogenic diet-induced elevated β-hydroxybutyrate. In addition, blood biochemical results showed that compared with the standard diet group of the disease, although the early and long-term ketogenic diet increased blood lipids to some extent, it seemed to reduce liver, renal, and myocardial damage caused by genetic differences. This will provide a piece of positive evidence for the early and long-term use of ketogenic diets in people at risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Yaya Qin
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Li Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Jia Li
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Rui Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, Sichuan, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| |
Collapse
|
8
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Halcrow PW, Kumar N, Hao E, Khan N, Meucci O, Geiger JD. Mu opioid receptor-mediated release of endolysosome iron increases levels of mitochondrial iron, reactive oxygen species, and cell death. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:19-35. [PMID: 37027339 PMCID: PMC10070011 DOI: 10.1515/nipt-2022-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
Abstract
Objectives Opioids including morphine and DAMGO activate mu-opioid receptors (MOR), increase intracellular reactive oxygen species (ROS) levels, and induce cell death. Ferrous iron (Fe2+) through Fenton-like chemistry increases ROS levels and endolysosomes are "master regulators of iron metabolism" and contain readily-releasable Fe2+ stores. However, mechanisms underlying opioid-induced changes in endolysosome iron homeostasis and downstream-signaling events remain unclear. Methods We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe2+ and ROS levels and cell death. Results Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe2+ levels, increased cytosol and mitochondria Fe2+ and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist β-funaltrexamine (β-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS. Opioid-induced efflux of endolysosome Fe2+ and subsequent Fe2+ accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO. Conclusions Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Emily Hao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Olimpia Meucci
- Department of Physiology and Pharmacology, Drexel University School of Medicine, Philadelphia, PA, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
10
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
11
|
Hippocampal Iron Accumulation Impairs Synapses and Memory via Suppressing Furin Expression and Downregulating BDNF Maturation. Mol Neurobiol 2022; 59:5574-5590. [PMID: 35732869 DOI: 10.1007/s12035-022-02929-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
Brain iron overload is positively correlated with the pathogenesis of Alzheimer's disease (AD). However, the role of iron in AD pathology is not completely understood. Furin is the first identified mammalian proprotein convertase that catalyzes the proteolytic maturation of large numbers of prohormones and proproteins. The correlation between altered furin expression and AD pathology has been suggested, but the underlying mechanism remains to be clarified. Here, we found that the expression of furin in the hippocampus of Alzheimer's model APP/PS1 mice was significantly reduced, and we demonstrated that the reduction of furin was directly caused by hippocampal iron overload using wild-type mice with intrahippocampal injection of iron. In cultured neuronal cells, this suppression effect was observed as transcriptional inhibition. Regarding the changes of furin-mediated activities caused by hippocampal iron overload, we found that the maturation of brain-derived neurotrophic factor (BDNF) was impeded and the expression levels of synaptogenesis-related proteins were downregulated, leading to cognitive decline. Furthermore, iron chelation or furin overexpression in the hippocampus of APP/PS1 mice increased furin expression, restored synapse plasticity, and ameliorated cognitive decline. Therefore, the inhibitory effect of hippocampal iron accumulation on furin transcription may be an important pathway involved in iron-mediated synapse damage and memory loss in AD. This study provides new insights into the molecular mechanisms of the toxic effects of iron in neurons and AD pathophysiology and renders furin as a potential target for treatment of iron overload-related neurodegenerative diseases.
Collapse
|
12
|
Kazkayasi I, Telli G, Nemutlu E, Uma S. Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer's disease. Life Sci 2022; 299:120538. [PMID: 35395244 DOI: 10.1016/j.lfs.2022.120538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023]
Abstract
AIMS The relationship between type 2 diabetes and Alzheimer's disease (AD) provides evidence that insulin and insulin sensitizers may be beneficial for the treatment of AD. The present study investigated the effect and mechanism of action of intranasal metformin treatment on impaired cognitive functions in an experimental mice model of AD. MAIN METHODS Intracerebroventricularly (ICV) streptozotocin (STZ)-injected mice were treated with intranasal or oral metformin for 4 weeks. Learning and memory functions were evaluated using Morris water maze. Metformin and Aβ42 concentrations were determined by liquid chromatography tandem mass spectrometry and ELISA respectively. The expressions of insulin receptor, Akt and their phosphorylated forms were determined in the hippocampi and cerebral cortices of mice. KEY FINDINGS ICV-STZ-induced AD mice displayed impaired learning and memory functions which were improved by metformin treatment. ICV-STZ injection or intranasal/oral metformin treatments had no effect on blood glucose concentrations. Intranasal treatment yielded higher concentration of metformin in the hippocampus and lower in the plasma compared to oral treatment. ICV-STZ injection and metformin treatments did not change amyloid β-42 concentration in the hippocampus of mice. In hippocampal and cortical tissues of ICV-STZ-induced AD mice, insulin receptor (IR) and Akt expressions were unchanged, while phosphorylated insulin receptor (pIR) and pAkt expressions decreased compared to control. Metformin treatments did not change IR and Akt expressions but increased pIR and pAkt expressions. SIGNIFICANCE The present study showed for the first time that intranasal metformin treatment improved the impaired cognitive functions through increasing insulin sensitivity in ICV-STZ-induced mice model of AD.
Collapse
Affiliation(s)
- Inci Kazkayasi
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Gokcen Telli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Serdar Uma
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
13
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2022; 42:3-21. [PMID: 34510330 PMCID: PMC11441261 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
15
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
16
|
Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021; 26:molecules26113255. [PMID: 34071479 PMCID: PMC8198152 DOI: 10.3390/molecules26113255] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.
Collapse
|
17
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
18
|
Kosyakovsky J, Fine JM, Frey WH, Hanson LR. Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease. Pharmaceuticals (Basel) 2021; 14:ph14020095. [PMID: 33513737 PMCID: PMC7911954 DOI: 10.3390/ph14020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- School of Medicine, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, USA;
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Jared M. Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
- Correspondence:
| | - William H. Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| |
Collapse
|
19
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
20
|
Farr AC, Xiong MP. Challenges and Opportunities of Deferoxamine Delivery for Treatment of Alzheimer's Disease, Parkinson's Disease, and Intracerebral Hemorrhage. Mol Pharm 2020; 18:593-609. [PMID: 32926630 DOI: 10.1021/acs.molpharmaceut.0c00474] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deferoxamine mesylate (DFO) is an FDA-approved, hexadentate iron chelator routinely used to alleviate systemic iron burden in thalassemia major and sickle cell patients. Iron accumulation in these disease states results from the repeated blood transfusions required to manage these conditions. Iron accumulation has also been implicated in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), and secondary injury following intracerebral hemorrhage (ICH). Chelation of brain iron is thus a promising therapeutic strategy for improving behavioral outcomes and slowing neurodegeneration in the aforementioned disease states, though the effectiveness of DFO treatment is limited on several accounts. Systemically administered DFO results in nonspecific toxicity at high doses, and the drug's short half-life leads to low patient compliance. Mixed reports of DFO's ability to cross the blood-brain barrier (BBB) also appear in literature. These limitations necessitate novel DFO formulations prior to the drug's widespread use in managing neurodegeneration. Herein, we discuss the various dosing regimens and formulations employed in intranasal (IN) or systemic DFO treatment, as well as the physiological and behavioral outcomes observed in animal models of AD, PD, and ICH. The clinical progress of chelation therapy with DFO in managing neurodegeneration is also evaluated. Finally, the elimination of intranasally administered particles via the glymphatic system and efflux transporters is discussed. Abundant preclinical evidence suggests that intranasal DFO treatment improves memory retention and behavioral outcome in rodent models of AD, PD, and ICH. Several other biochemical and physiological metrics, such as tau phosphorylation, the survival of tyrosine hydroxylase-positive neurons, and infarct volume, are also positively affected by intranasal DFO treatment. However, dosing regimens are inconsistent across studies, and little is known about brain DFO concentration following treatment. Systemic DFO treatment yields similar results, and some complex formulations have been developed to improve permeability across the BBB. However, despite the success in preclinical models, clinical translation is limited with most clinical evidence investigating DFO treatment in ICH patients, where high-dose treatment has proven dangerous and dosing regimens are not consistent across studies. DFO is a strong drug candidate for managing neurodegeneration in the aging population, but before it can be routinely implemented as a therapeutic agent, dosing regimens must be standardized, and brain DFO content following drug administration must be understood and controlled via novel formulations.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Xu Y, Zhang Y, Zhang JH, Han K, Zhang X, Bai X, You LH, Yu P, Shi Z, Chang YZ, Gao G. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice. Free Radic Biol Med 2020; 158:84-95. [PMID: 32707154 DOI: 10.1016/j.freeradbiomed.2020.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Iron overload in the brain and iron-induced oxidative damage have been considered to play key roles in the pathogenesis of Alzheimer's disease (AD). Hepcidin is a peptide that regulates systemic iron metabolism by interacting with iron exporter ferroportin 1 (FPN1). Studies have indicated that the astrocyte hepcidin could regulate brain iron intake at the blood-brain barrier and injection of hepcidin into brain attenuated iron deposition in the brain. However, whether overexpression of hepcidin in astrocytes of APP/PS1 transgenic mice can alleviate AD symptoms by reducing iron deposition has not been evaluated. In this study, we overexpressed hepcidin in astrocytes of APP/PS1 mice and investigated its effects on β-amyloid (Aβ) aggregation, neuronal loss, iron deposition and iron-induced oxidative damages. Our results showed that the elevated expression of astrocyte hepcidin in APP/PS1 mice significantly improved their cognitive decline, and partially alleviated the formation of Aβ plaques in cortex and hippocampus. Further investigations revealed that overexpression of hepcidin in astrocytes significantly reduced iron levels in cortex and hippocampus of APP/PS1 mice, especially iron content in neurons, which led to the reduction of iron accumulation-induced oxidative stress and neuroinflammation, and finally decreased neuronal cell death in the cortex and hippocampus of APP/PS1 mice. This study demonstrated that overexpression of hepcidin in astrocytes of APP/PS1 mice could partially alleviate AD symptoms and delay the pathological process of AD.
Collapse
Affiliation(s)
- Yong Xu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Jian-Hua Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xinwei Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xue Bai
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| |
Collapse
|
22
|
Grijota-Martínez C, Bárez-López S, Ausó E, Refetoff S, Frey WH, Guadaño-Ferraz A. Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS One 2020; 15:e0236113. [PMID: 32687511 PMCID: PMC7371167 DOI: 10.1371/journal.pone.0236113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of function mutations in the gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to severe neurodevelopmental defects in humans associated with a specific thyroid hormone phenotype manifesting high serum 3,5,3'-triiodothyronine (T3) and low thyroxine (T4) levels. Patients present a paradoxical state of peripheral hyperthyroidism and brain hypothyroidism, this last one most likely arising from impaired thyroid hormone transport across the brain barriers. The administration of thyroid hormones by delivery pathways that bypass the brain barriers, such as the intranasal delivery route, offers the possibility to improve the neurological defects of MCT8-deficient patients. In this study, the thyroid hormones T4 and T3 were administrated intranasally in different mouse models of MCT8 deficiency. We have found that, under the present formulation, intranasal administration of thyroid hormones does not increase the content of thyroid hormones in the brain and further raises the peripheral thyroid hormone levels. Our data suggests intranasal delivery of thyroid hormones is not a suitable therapeutic strategy for MCT8 deficiency, although alternative formulations could be considered in the future to improve the nose-to-brain transport.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Eva Ausó
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Spain
| | - Samuel Refetoff
- Departments of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Committee on Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Frey
- HealthPartners Neuroscience Center, St. Paul, Minnesota, United States of America
- HealthPartners Institute, St. Paul, Minnesota, United States of America
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Pilozzi A, Yu Z, Carreras I, Cormier K, Hartley D, Rogers J, Dedeoglu A, Huang X. A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules 2020; 10:E408. [PMID: 32155778 PMCID: PMC7175127 DOI: 10.3390/biom10030408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
A large body of evidence indicates that dysregulation of cerebral biometals (Fe, Cu, Zn) and their interactions with amyloid precursor protein (APP) and Aβ amyloid may contribute to the Alzheimer's disease (AD) Aβ amyloid pathology. However, the molecular underpinnings associated with the interactions are still not fully understood. Herein we have further validated the exacerbation of Aβ oligomerization by Cu and H2O2 in vitro. We have also reported that Cu enhanced APP translations via its 5' untranslated region (5'UTR) of mRNA in SH-SY5Y cells, and increased Aβ amyloidosis and expression of associated pro-inflammatory cytokines such as MCP-5 in Alzheimer's APP/PS1 doubly transgenic mice. This preliminary study may further unravel the pathogenic role of Cu in Alzheimer's Aβ amyloid pathogenesis, warranting further investigation.
Collapse
Affiliation(s)
- Alexander Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Isabel Carreras
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kerry Cormier
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Jack Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| |
Collapse
|
24
|
Fine JM, Kosyakovsky J, Baillargeon AM, Tokarev JV, Cooner JM, Svitak AL, Faltesek KA, Frey WH, Hanson LR. Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav 2020; 10:e01536. [PMID: 31960628 PMCID: PMC7066355 DOI: 10.1002/brb3.1536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Intranasal deferoxamine (IN DFO) has been shown to decrease memory loss and have beneficial impacts across several models of neurologic disease and injury, including rodent models of Alzheimer's and Parkinson's disease. METHODS In order to assess the mechanism of DFO, determine its ability to improve memory from baseline in the absence of a diseased state, and assess targeting ability of intranasal delivery, we treated healthy mice with IN DFO (2.4 mg) or intraperitoneal (IP) DFO and compared behavioral and biochemical changes with saline-treated controls. Mice were treated 5 days/week for 4 weeks and subjected to behavioral tests 30 min after dosing. RESULTS We found that IN DFO, but not IP DFO, significantly enhanced working memory in the radial arm water maze, suggesting that IN administration is more efficacious as a targeted delivery route to the brain. Moreover, the ability of DFO to improve memory from baseline in healthy mice suggests a non-disease-specific mechanism of memory improvement. IN DFO treatment was accompanied by decreased GSK-3β activity and increased HIF-1α activity. CONCLUSIONS These pathways are suspected in DFO's ability to improve memory and perhaps represent a component of the common mechanism through which DFO enacts beneficial change in models of neurologic disease and injury.
Collapse
Affiliation(s)
- Jared M Fine
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob Kosyakovsky
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - Julian V Tokarev
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob M Cooner
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Aleta L Svitak
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - William H Frey
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Leah R Hanson
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| |
Collapse
|
25
|
Kosyakovsky J, Witthuhn BA, Svitak AL, Frey WH, Hanson LR, Fine JM. Quantifying Intranasally Administered Deferoxamine in Rat Brain Tissue with Mass Spectrometry. ACS Chem Neurosci 2019; 10:4571-4578. [PMID: 31573798 DOI: 10.1021/acschemneuro.9b00436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deferoxamine, a metal chelator, has been shown to be neuroprotective in animal models of ischemic stroke, traumatic brain injury and both subarachnoid and intracerebral hemorrhage. Intranasal deferoxamine (IN DFO) has also shown promise as a potential treatment for multiple neurodegenerative diseases, including Parkinson's and Alzheimer's. However, there have been no attempts to thoroughly understand the dynamics and pharmacokinetics of IN DFO. We developed a new high-performance liquid-chromatography electrospray-tandem mass spectrometry (HPLC/ESI-MS2) method to quantify the combined total levels of DFO, ferrioxamine (FO; DFO bound to iron), and aluminoxamine (AO; aluminum-bound DFO) in brain tissue using a custom-synthesized deuterated analogue (DFO-d7, Medical Isotopes Inc., Pelham NH) as an internal standard. We applied our method toward understanding the pharmacokinetics of IN DFO delivery to the brain and blood of rats from 15 min to 4 h after delivery. We found that IN delivery successfully targets DFO to the brain to achieve concentrations of 0.5-15 μM in various brain regions within 15 min, and decreasing though still detectable after 4 h. Systemic exposure was minimized as assessed by concentration in blood serum. Serum concentrations were 0.02 μM at 15 min and no more than 0.1 μM at later time points. Compared to blood serum, brain region-specific drug exposure (as measured by area under the curve) ranged from slightly under 10 times exposure in the hippocampus to almost 200 times exposure in the olfactory bulb with IN DFO delivery. These findings represent a major step toward future method development, pharmacokinetic studies, and clinical trials for this promising therapeutic.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota 55130, United States
| | - Bruce A. Witthuhn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55108, United States
| | - Aleta L. Svitak
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota 55130, United States
| | - William H. Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota 55130, United States
| | - Leah R. Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota 55130, United States
| | - Jared M. Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota 55130, United States
| |
Collapse
|
26
|
Fine JM, Stroebel BM, Faltesek KA, Terai K, Haase L, Knutzen KE, Kosyakovsky J, Bowe TJ, Fuller AK, Frey WH, Hanson LR. Intranasal delivery of low-dose insulin ameliorates motor dysfunction and dopaminergic cell death in a 6-OHDA rat model of Parkinson's Disease. Neurosci Lett 2019; 714:134567. [PMID: 31629033 DOI: 10.1016/j.neulet.2019.134567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Emerging evidence continues to demonstrate that disrupted insulin signaling and altered energy metabolism may play a key role underpinning pathology in neurodegenerative conditions. Intranasally administered insulin has already shown promise as a memory-enhancing therapy in patients with Alzheimer's and animal models of the disease. Intranasal drug delivery allows for direct targeting of insulin to the brain, bypassing the blood brain barrier and minimizing systemic adverse effects. In this study, we sought to expand upon previous results that show intranasal insulin may also have promise as a Parkinson's therapy. We treated 6-OHDA parkinsonian rats with a low dose (3 IU/day) of insulin and assessed apomorphine induced rotational turns, motor deficits via a horizontal ladder test, and dopaminergic cell survival via stereological counting. We found that insulin therapy substantially reduced motor dysfunction and dopaminergic cell death induced by unilateral injection of 6-OHDA. These results confirm insulin's efficacy within this model, and do so over a longer period after model induction which more closely resembles Parkinson's disease. This study also employed a lower dose than previous studies and utilizes a delivery device, which could lead to an easier transition into human clinical trials as a therapeutic for Parkinson's disease.
Collapse
Affiliation(s)
- Jared M Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States.
| | - Benjamin M Stroebel
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Katherine A Faltesek
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Kaoru Terai
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Lucas Haase
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Kristin E Knutzen
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Jacob Kosyakovsky
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Tate J Bowe
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Austin K Fuller
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - William H Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| | - Leah R Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, 295 Phalen Blvd., Saint Paul, MN, 55130, United States
| |
Collapse
|
27
|
Kisby B, Jarrell JT, Agar ME, Cohen DS, Rosin ER, Cahill CM, Rogers JT, Huang X. Alzheimer's Disease and Its Potential Alternative Therapeutics. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2019; 9. [PMID: 31588368 PMCID: PMC6777730 DOI: 10.4172/2161-0460.1000477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that affects over 5 million individuals in the United States alone. Currently, there are only two kinds of pharmacological interventions available for symptomatic relief of AD; Acetyl Cholinesterase Inhibitors (AChEI) and N-methyl-D-aspartic Acid (NMDA) receptor antagonists and these drugs do not slow down or stop the progression of the disease. Several molecular targets have been implicated in the pathophysiology of AD, such as the tau (τ) protein, Amyloid-beta (Aβ), the Amyloid Precursor Protein (APP) and more and several responses have also been observed in the advancement of the disease, such as reduced neurogenesis, neuroinflammation, oxidative stress and iron overload. In this review, we discuss general features of AD and several small molecules across different experimental AD drug classes that have been studied for their effects in the context of the molecular targets and responses associated with the AD progression. These drugs include: Paroxetine, Desferrioxamine (DFO), N-acetylcysteine (NAC), Posiphen/-(−)Phenserine, JTR-009, Carvedilol, LY450139, Intravenous immunoglobulin G 10%, Indomethacin and Lithium Carbonate (Li2CO3).
Collapse
Affiliation(s)
- Brent Kisby
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Enes Agar
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
28
|
Zhang LM, Zhang DX, Fu L, Li Y, Wang XP, Qi MM, Li CC, Song PP, Wang XD, Kong XJ. Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med 2019; 141:299-309. [PMID: 31265876 DOI: 10.1016/j.freeradbiomed.2019.06.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Carbon monoxide (CO) releasing molecule (CORM)-3, a water-soluble CORM, has protective effects against inflammatory and ischemia/reperfusion injury. We determined the effect of CORM-3 against neuronal pyroptosis in a model of hemorrhagic shock and resuscitation (HSR) in rats via mitochondrial regulation. METHODS Rats were treated with CORM-3 (4 mg/kg) in vitro after HSR. We measured cortical CO content 3-24 h after HSR; assessed neuronal pyroptosis, mitochondrial morphology, ROS production, and mitochondrial membrane potential at 12 h after HSR; and evaluated brain magnetic resonance imaging at 24 h after HSR and learning ability 30 days after HSR. We also measured soluble guanylate-cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway activity using a blocker of sGC, NS2028, and 125I-cGMP assay. RESULTS Among rats that underwent HSR, CORM-3-treated rats had more CO in the cortical tissue than sham- and iCORM-3-treated rats. CORM-3-treated rats had significantly less neuronal pyroptosis in the cortical tissue; higher sGC activity and cGMP content; lower ROS production; better mitochondrial morphology, function, and membrane potential; and enhanced learning/memory ability than HSR-treated rats. However, these neuroprotective effects of CORM-3 were partially inhibited by NS2028. CONCLUSION CORM-3 may alleviate neuronal pyroptosis and improve neurological recovery in HSR through mitochondrial regulation mediated by the sGC-cGMP pathway. Thus, CO administration could be a promising therapeutic strategy for hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Chen-Chen Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Pan-Pan Song
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Dong Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiang-Jun Kong
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
29
|
Qin Y, Li G, Sun Z, Xu X, Gu J, Gao F. Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res 2019; 367:194-200. [PMID: 30953658 DOI: 10.1016/j.bbr.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) may lead to brain atrophy and cognitive dysfunction. This study aimed to compare the efficacy of nimodipine and deferoxamine on these sequelae of SAH. A rat model of SAH was established by the double-hemorrhage method. These rats were injected with saline (intraperitoneal, IP), nimodipine (IP), or deferoxamine (IP and intranasal) every 12 h for 5 days after SAH. The MRI scanning, including magnetic resonance angiography, diffusion tensor imaging, T2-weighted imaging, was performed to detect the brain structure. The levels of iron metabolism-related proteins were examined by Western blot analysis. The Morris water maze (MWM) test was used to assess the cognitive function. Then, then neurons in the cortex and hippocampus were counted on hematoxylin and eosin-stained brain sections. Significant cerebral vasospasm (CVS) was found in the saline and deferoxamine groups, but not in the nimodipine group. Cerebral peduncle injury was detected in the saline and nimodipine groups, but not significantly in the deferoxamine group. Compared with nimodipine, deferoxamine reduced transferrin (Tf), Tf receptor, and ferritin levels after SAH. The MWM performances were significantly worse in the saline and nimodipine groups than that in the deferoxamine group. Brain atrophy and neuronal losses were more significant in the saline and nimodipine groups than in the deferoxamine group. Nimodipine significantly ameliorated CVS, but it did not improve the late changes in brain structure and cognitive function. Deferoxamine effectively reduced neuronal cell death and ameliorated cognitive function after SAH.
Collapse
Affiliation(s)
- Yang Qin
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China; Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Gaili Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhiyong Sun
- Department of Nuclear Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xianhua Xu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Jianwen Gu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China; Department of Neurosurgery, The 306th Hospital of PLA, Beijing, China.
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
31
|
Zhang LM, Zhang DX. The Dual Neuroprotective-Neurotoxic Effects of Sevoflurane After Hemorrhagic Shock Injury. J Surg Res 2019; 235:591-599. [DOI: 10.1016/j.jss.2018.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
32
|
Targeting the Iron-Response Elements of the mRNAs for the Alzheimer's Amyloid Precursor Protein and Ferritin to Treat Acute Lead and Manganese Neurotoxicity. Int J Mol Sci 2019; 20:ijms20040994. [PMID: 30823541 PMCID: PMC6412244 DOI: 10.3390/ijms20040994] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
The therapeutic value of inhibiting translation of the amyloid precursor protein (APP) offers the possibility to reduce neurotoxic amyloid formation, particularly in cases of familial Alzheimer’s disease (AD) caused by APP gene duplications (Dup–APP) and in aging Down syndrome individuals. APP mRNA translation inhibitors such as the anticholinesterase phenserine, and high throughput screened molecules, selectively inhibited the uniquely folded iron-response element (IRE) sequences in the 5’untranslated region (5’UTR) of APP mRNA and this class of drug continues to be tested in a clinical trial as an anti-amyloid treatment for AD. By contrast, in younger age groups, APP expression is not associated with amyloidosis, instead it acts solely as a neuroprotectant while facilitating cellular ferroportin-dependent iron efflux. We have reported that the environmental metallotoxins Lead (Pb) and manganese (Mn) cause neuronal death by interfering with IRE dependent translation of APP and ferritin. The loss of these iron homeostatic neuroprotectants thereby caused an embargo of iron (Fe) export from neurons as associated with excess unstored intracellular iron and the formation of toxic reactive oxidative species (ROS). We propose that APP 5’UTR directed translation activators can be employed therapeutically to protect neurons exposed to high acute Pb and/or Mn exposure. Certainly, high potency APP translation activators, exemplified by the Food and Drug Administration (FDA) pre-approved M1 muscarinic agonist AF102B and high throughput-screened APP 5’UTR translation activators, are available for drug development to treat acute toxicity caused by Pb/Mn exposure to neurons. We conclude that APP translation activators can be predicted to prevent acute metal toxicity to neurons by a mechanism related to the 5’UTR specific yohimbine which binds and targets the canonical IRE RNA stem loop as an H-ferritin translation activator.
Collapse
|
33
|
Mollica A, Stefanucci A, Zengin G, Locatelli M, Macedonio G, Orlando G, Ferrante C, Menghini L, Recinella L, Leone S, Chiavaroli A, Leporini L, Di Nisio C, Brunetti L, Tayrab E, Ali I, Musa TH, Musa HH, Ahmed AA. Polyphenolic composition, enzyme inhibitory effects ex-vivo and in-vivo studies on two Brassicaceae of north-central Italy. Biomed Pharmacother 2018; 107:129-138. [DOI: 10.1016/j.biopha.2018.07.169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023] Open
|