1
|
Burzyńska M, Woźniak J, Urbański P, Kędziora J, Załuski R, Goździk W, Uryga A. Heart Rate Variability and Cerebral Autoregulation in Patients with Traumatic Brain Injury with Paroxysmal Sympathetic Hyperactivity Syndrome. Neurocrit Care 2024:10.1007/s12028-024-02149-1. [PMID: 39470966 DOI: 10.1007/s12028-024-02149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) can lead to transient changes in autonomic nervous system (ANS) functioning and development of paroxysmal sympathetic hyperactivity (PSH) syndrome. Clinical manifestation of ANS disorders may be obscured by therapeutic interventions in TBI. This study aims to analyze ANS metrics and cerebral autoregulation in patients with PSH syndrome to determine their significance in early prognostication. METHODS This single-center retrospective study investigated the relationship between changes in ANS metrics, cerebral autoregulation, and PSH syndrome. Arterial blood pressure and intracranial pressure signals were monitored for 5 days post TBI. ANS metrics included time and frequency domain heart rate variability (HRV) metrics. Cerebral autoregulation was assessed using the pressure reactivity index. RESULTS Sixty-six patients with severe TBI (median age 33 [interquartile range 26-50] years) were analyzed, and PSH was confirmed in nine cases. Impairment of cerebral autoregulation was observed in 67% of patients with PSH and 72% without the syndrome. Patients with PSH had higher HRV in the low-frequency range (LF; 253 ± 178 vs. 176 ± 227 ms2; p = 0.035) and lower heart rates (HRs; 70 ± 7 vs. 78 ± 19 bpm; p = 0.027) compared to those without PSH. A receiver operating characteristic curve analysis indicated that HR (area under the curve (AUC) = 0.73, p = 0.006) and HRV in the LF (AUC = 0.70, p = 0.009) are moderate predictors of PSH. In the multiple logistic regression model for PSH, diffuse axonal trauma (odds ratio (OR) = 10.82, 95% confidence interval (CI) = 1.70-68.98, p = 0.012) and HR (OR = 0.91, 95% CI 0.84-0.98, p = 0.021) were significant factors. CONCLUSIONS Elevated HRV in the LF and decreased HR may serve as early predictors of PSH syndrome development, particularly in patients with diffuse axonal trauma. Further research is needed to investigate the utility of the cerebral autoregulation-ANS relationship in PSH prognostication.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jowita Woźniak
- Department of Neurosurgery, Wroclaw University Hospital, Wroclaw, Poland
| | - Piotr Urbański
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jarosław Kędziora
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Rafał Załuski
- Clinical Department of Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Olsen MH, Riberholt CG, Berg RMG, Møller K. Myths and methodologies: Assessment of dynamic cerebral autoregulation by the mean flow index. Exp Physiol 2024; 109:614-623. [PMID: 38376110 PMCID: PMC10988760 DOI: 10.1113/ep091327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The mean flow index-usually referred to as Mx-has been used for assessing dynamic cerebral autoregulation (dCA) for almost 30 years. However, concerns have arisen regarding methodological consistency, construct and criterion validity, and test-retest reliability. Methodological nuances, such as choice of input (cerebral perfusion pressure, invasive or non-invasive arterial pressure), pre-processing approach and artefact handling, significantly influence mean flow index values, and previous studies correlating mean flow index with other established dCA metrics are confounded by inherent methodological flaws like heteroscedasticity, while the mean flow index also fails to discriminate individuals with presumed intact versus impaired dCA (discriminatory validity), and its prognostic performance (predictive validity) across various conditions remains inconsistent. The test-retest reliability, both within and between days, is generally poor. At present, no single approach for data collection or pre-processing has proven superior for obtaining the mean flow index, and caution is advised in the further use of mean flow index-based measures for assessing dCA, as current evidence does not support their clinical application.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
| | - Christian Gunge Riberholt
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Brain and Spinal Cord Injury, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Clinical Physiology and Nuclear MedicineCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Centre for Physical Activity ResearchCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Agrawal S, Nijs K, Subramaniam S, Englesakis M, Venkatraghavan L, Chowdhury T. Predictor role of heart rate variability in subarachnoid hemorrhage: A systematic review. J Clin Monit Comput 2024; 38:177-185. [PMID: 37335412 DOI: 10.1007/s10877-023-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Background- Subarachnoid hemorrhage (SAH) is one of the most devastating diseases with a high rate of morbidity and mortality. The heart rate variability (HRV) is a non-invasive method of monitoring various components of the autonomic nervous system activity that can be utilized to delineate autonomic dysfunctions associated with various physiological and pathological conditions. The reliability of HRV as a predictor of clinical outcome in aneurysmal subarachnoid hemorrhage (aSAH) is not yet well investigated in literature. Methods- A systematic review and in depth analysis of 10 articles on early HRV changes in SAH patients was performed. Results- This systematic review demonstrates a correlation between early changes in HRV indices (time and frequency domain) and the development of neuro-cardiogenic complications and poor neurologic outcome in patients with SAH. Conclusions- A correlation between absolute values or changes of the LF/HF ratio and neurologic and cardiovascular complications was found in multiple studies. Because of significant limitations of included studies, a large prospective study with proper handling of confounders is needed to generate high-quality recommendations regarding HRV as a predictor of post SAH complications and poor neurologic outcome.
Collapse
Affiliation(s)
- Sanket Agrawal
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Kristof Nijs
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Sudhakar Subramaniam
- Department of Anesthesia, Thunder Bay Regional Health Sciences Center, Thunder Bay, ON, Canada
| | - Marina Englesakis
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University Health Network - Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
4
|
Burzyńska M, Uryga A, Załuski R, Goździk A, Adamik B, Robba C, Goździk W. Cerebrospinal Fluid and Serum Biomarker Insights in Aneurysmal Subarachnoid Haemorrhage: Navigating the Brain-Heart Interrelationship for Improved Patient Outcomes. Biomedicines 2023; 11:2835. [PMID: 37893210 PMCID: PMC10604203 DOI: 10.3390/biomedicines11102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The pathophysiological mechanisms underlying severe cardiac dysfunction after aneurysmal subarachnoid haemorrhage (aSAH) remain poorly understood. In the present study, we focused on two categories of contributing factors describing the brain-heart relationship. The first group includes brain-specific cerebrospinal fluid (CSF) and serum biomarkers, as well as cardiac-specific biomarkers. The secondary category encompasses parameters associated with cerebral autoregulation and the autonomic nervous system. A group of 15 aSAH patients were included in the analysis. Severe cardiac complications were diagnosed in seven (47%) of patients. In the whole population, a significant correlation was observed between CSF S100 calcium-binding protein B (S100B) and brain natriuretic peptide (BNP) (rS = 0.62; p = 0.040). Additionally, we identified a significant correlation between CSF neuron-specific enolase (NSE) with cardiac troponin I (rS = 0.57; p = 0.025) and BNP (rS = 0.66; p = 0.029), as well as between CSF tau protein and BNP (rS = 0.78; p = 0.039). Patients experiencing severe cardiac complications exhibited notably higher levels of serum tau protein at day 1 (0.21 ± 0.23 [ng/mL]) compared to those without severe cardiac complications (0.03 ± 0.04 [ng/mL]); p = 0.009. Impaired cerebral autoregulation was noted in patients both with and without severe cardiac complications. Elevated serum NSE at day 1 was related to impaired cerebral autoregulation (rS = 0.90; p = 0.037). On the first day, a substantial, reciprocal correlation between heart rate variability low-to-high frequency ratio (HRV LF/HF) and both GFAP (rS = -0.83; p = 0.004) and S100B (rS = -0.83; p = 0.004) was observed. Cardiac and brain-specific biomarkers hold the potential to assist clinicians in providing timely insights into cardiac complications, and therefore they contribute to the prognosis of outcomes.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Rafał Załuski
- Department of Neurosurgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Anna Goździk
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Barbara Adamik
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy;
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16145 Genoa, Italy
| | - Waldemar Goździk
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| |
Collapse
|
5
|
Marino L, Badenes R, Bilotta F. Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review. J Clin Med 2023; 12:4355. [PMID: 37445389 DOI: 10.3390/jcm12134355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This systematic review presents clinical evidence on the association of heart rate variability with outcome prediction in intracerebral and subarachnoid hemorrhages. The literature search led to the retrieval of 19 significant studies. Outcome prediction included functional outcome, cardiovascular complications, secondary brain injury, and mortality. Various aspects of heart rate recording and analysis, based on linear time and frequency domains and a non-linear entropy approach, are reviewed. Heart rate variability was consistently associated with poor functional outcome and mortality, while controversial results were found regarding the association between heart rate variability and secondary brain injury and cardiovascular complications.
Collapse
Affiliation(s)
- Luca Marino
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, 00184 Rome, Italy
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clínic Universitari de Vacia, University of Valencia, 46010 Valencia, Spain
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, "Sapienza" University of Rome, 00185 Rome, Italy
| |
Collapse
|
6
|
Burma JS, Rattana S, Johnson NE, Smirl JD. Do mean values tell the full story? Cardiac cycle and biological sex comparisons in temporally derived neurovascular coupling metrics. J Appl Physiol (1985) 2023; 134:426-443. [PMID: 36603050 DOI: 10.1152/japplphysiol.00170.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous reports have noted cerebrovascular regulation differs across the cardiac cycle, with greater regulation occurring within systole. However, this methodological notion has not been meticulously scrutinized during temporally deduced neurovascular coupling (NVC) metrics with additional respect to biological sex. Analyses of 111 healthy individuals (40 females/71 males) were performed where participants engaged in the "Where's Waldo?" paradigm. All NVC parameters were quantified in the posterior and middle cerebral arteries at 310 unique timepoints. Several individuals completed repeat testing which enabled for between-day (3 timepoints) and within-day (7 timepoints) reliability comparisons in 17 and 11 individuals, respectively. One-way analysis of variance compared NVC metrics between diastole, mean, and systole values, as well as differences between biological sexes. Greater absolute cerebral blood velocity (CBv; baseline and peak) and total activation (area under the curve) were noted within systole for both posterior cerebral artery (PCA; P < 0.001) and middle cerebral artery (MCA; P < 0.001) values; however, the relative percent increase in CBv was greater within diastole (P < 0.001). Females had an elevated diastolic and mean CBv and a greater diastolic cerebrovascular conductance (P < 0.050). No sex differences were present for systolic CBv measures and within parameters quantifying the NVC response (area under the curve/relative CBv increase) across the cardiac cycle (P > 0.072). Future investigations seeking to differentiate cerebral regulatory mechanisms between clinical populations may benefit by performing their analyses across the cardiac cycle, as certain pathogenesis may affect one aspect of the cardiac cycle independently. Minimal differences were noted between females and males for metrics characterizing the NVC response across the cardiac cycle.NEW & NOTEWORTHY Neurovascular coupling (NVC) studies commonly assess the mean cerebral hemodynamic response with little consideration for diastole, systole, and biological sex. Greater total activation expressed as the area under the curve was seen within systole compared with mean and diastole. Resting cerebral blood velocity sex differences were more prevalent during diastole when the cerebrovasculature was pressure-passive. Future studies should assess the NVC response across the cardiac cycle as it may help delineate the underlying pathophysiology of various clinical populations.
Collapse
Affiliation(s)
- Joel S Burma
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Selina Rattana
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Ilan Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput Struct Biotechnol J 2022; 20:6087-6096. [DOI: 10.1016/j.csbj.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
|
8
|
Leveraging Continuous Vital Sign Measurements for Real-Time Assessment of Autonomic Nervous System Dysfunction After Brain Injury: A Narrative Review of Current and Future Applications. Neurocrit Care 2022; 37:206-219. [PMID: 35411542 DOI: 10.1007/s12028-022-01491-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 02/03/2023]
Abstract
Subtle and profound changes in autonomic nervous system (ANS) function affecting sympathetic and parasympathetic homeostasis occur as a result of critical illness. Changes in ANS function are particularly salient in neurocritical illness, when direct structural and functional perturbations to autonomic network pathways occur and may herald impending clinical deterioration or intervenable evolving mechanisms of secondary injury. Sympathetic and parasympathetic balance can be measured quantitatively at the bedside using multiple methods, most readily by extracting data from electrocardiographic or photoplethysmography waveforms. Work from our group and others has demonstrated that data-analytic techniques can identify quantitative physiologic changes that precede clinical detection of meaningful events, and therefore may provide an important window for time-sensitive therapies. Here, we review data-analytic approaches to measuring ANS dysfunction from routine bedside physiologic data streams and integrating this data into multimodal machine learning-based model development to better understand phenotypical expression of pathophysiologic mechanisms and perhaps even serve as early detection signals. Attention will be given to examples from our work in acute traumatic brain injury on detection and monitoring of paroxysmal sympathetic hyperactivity and prediction of neurologic deterioration, and in large hemispheric infarction on prediction of malignant cerebral edema. We also discuss future clinical applications and data-analytic challenges and future directions.
Collapse
|
9
|
Uryga A, Nasr N, Kasprowicz M, Woźniak J, Goździk W, Burzyńska M. Changes in autonomic nervous system during cerebral desaturation episodes in aneurysmal subarachnoid hemorrhage. Auton Neurosci 2022; 239:102968. [DOI: 10.1016/j.autneu.2022.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|
10
|
Uryga A, Nasr N, Kasprowicz M, Budohoski K, Sykora M, Smielewski P, Burzyńska M, Czosnyka M. Relationship Between Baroreflex and Cerebral Autoregulation in Patients With Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2022; 12:740338. [PMID: 35095711 PMCID: PMC8790510 DOI: 10.3389/fneur.2021.740338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Common consequences following aneurysmal subarachnoid hemorrhage (aSAH) are cerebral vasospasm (CV), impaired cerebral autoregulation (CA), and disturbance in the autonomic nervous system, as indicated by lower baroreflex sensitivity (BRS). The compensatory interaction between BRS and CA has been shown in healthy volunteers and stable pathological conditions such as carotid atherosclerosis. The aim of this study was to investigate whether the inverse correlation between BRS and CA would be lost in patients after aSAH during vasospasm. A secondary objective was to analyze the time-trend of BRS after aSAH. Materials and Methods: Retrospective analysis of prospectively collected data was performed at the Neuro-Critical Care Unit of Addenbrooke's Hospital (Cambridge, UK) between June 2010 and January 2012. The cerebral blood flow velocity (CBFV) was measured in the middle cerebral artery using transcranial Doppler ultrasonography (TCD). The arterial blood pressure (ABP) was monitored invasively through an arterial line. CA was quantified by the correlation coefficient (Mxa) between slow oscillations in ABP and CBFV. BRS was calculated using the sequential cross-correlation method using the ABP signal. Results: A total of 73 patients with aSAH were included. The age [median (lower-upper quartile)] was 58 (50–67). WFNS scale was 2 (1–4) and the modified Fisher scale was 3 (1–3). In the total group, 31 patients (42%) had a CV and 42 (58%) had no CV. ABP and CBFV were higher in patients with CV during vasospasm compared to patients without CV (p = 0.001 and p < 0.001). There was no significant correlation between Mxa and BRS in patients with CV, neither during nor before vasospasm. In patients without CV, a significant, although moderate correlation was found between BRS and Mxa (rS = 0.31; p = 0.040), with higher BRS being associated with worse CA. Multiple linear regression analysis showed a significant worsening of BRS after aSAH in patients with CV (Rp = −0.42; p < 0.001). Conclusions: Inverse compensatory correlation between BRS and CA was lost in patients who developed CV after aSAH, both before and during vasospasm. The impact of these findings on the prognosis of aSAH should be investigated in larger studies.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Nathalie Nasr
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse, France.,Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Karol Budohoski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Sykora
- Department of Neurology, St. John's Hospital, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Małgorzata Burzyńska
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wrocław, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
11
|
Olsen MH, Riberholt CG, Mehlsen J, Berg RM, Møller K. Reliability and validity of the mean flow index (Mx) for assessing cerebral autoregulation in humans: A systematic review of the methodology. J Cereb Blood Flow Metab 2022; 42:27-38. [PMID: 34617816 PMCID: PMC8721771 DOI: 10.1177/0271678x211052588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral autoregulation is a complex mechanism that serves to keep cerebral blood flow relatively constant within a wide range of cerebral perfusion pressures. The mean flow index (Mx) is one of several methods to assess dynamic cerebral autoregulation, but its reliability and validity have never been assessed systematically. The purpose of the present systematic review was to evaluate the methodology, reliability and validity of Mx.Based on 128 studies, we found inconsistency in the pre-processing of the recordings and the methods for calculation of Mx. The reliability in terms of repeatability and reproducibility ranged from poor to excellent, with optimal repeatability when comparing overlapping recordings. The discriminatory ability varied depending on the patient populations; in general, those with acute brain injury exhibited a higher Mx than healthy volunteers. The prognostic ability in terms of functional outcome and mortality ranged from chance result to moderate accuracy.Since the methodology was inconsistent between studies, resulting in varying reliability and validity estimates, the results were difficult to compare. The optimal method for deriving Mx is currently unknown.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gunge Riberholt
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation/Traumatic Brain Injury Unit, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mehlsen
- Surgical Pathophysiology Unit, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ronan Mg Berg
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Kirsten Møller
- Department of Neuroanaesthesiology, 53146Rigshospitalet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Burma JS, Lapointe AP, Soroush A, Oni IK, Smirl JD, Dunn JF. Insufficient sampling frequencies skew heart rate variability estimates: Implications for extracting heart rate metrics from neuroimaging and physiological data. J Biomed Inform 2021; 123:103934. [PMID: 34666185 DOI: 10.1016/j.jbi.2021.103934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND While cardiac pulsations are widely present within physiological and neuroimaging data, it is unknown the extent this information can provide valid and reliable heart rate and heart rate variability (HRV) estimates. The objective of this study was to demonstrate how a slight temporal shift due to an insufficient sampling frequency can impact the validity/accuracy of deriving cardiac metrics. METHODS Twenty-two participants were instrumented with valid/reliable industry-standard or open-source electrocardiograms. Five-minute lead II recordings were collected at 1000 Hz in an upright orthostatic position. Following artifact removal, the 1000 Hz recording for each participant was downsampled to frequencies ranging 2-500 Hz. The validity of each participant's downsampled recording was compared against their 1000 Hz recording ("reference-standard") using Bland-Altman plots with 95 % limits of agreement (LOA), coefficient of variation (CoV), intraclass correlation coefficients, and adjusted r-squared values. RESULTS Downsampled frequencies of ≥ 50 and ≥ 90 Hz produced highly robust measures with narrow log-transformed 95 % LOA (<±0.01) and low CoV values (≤3.5 %) for heart rate and HRV metrics, respectively. Below these thresholds, the log-transformed 95 % LOA became wider (LOA range: ±0.1-1.9) and more variable (CoV range: 1.5-111.6 %). CONCLUSION These results provide an important consideration for obtaining cardiac information from physiological data. Compared to the "reference-standard" ECG, a seemingly negligible temporal shift of the systolic contraction (R wave) greater than 11-milliseconds (90 Hz) away from its true value, lessened the validity of the HRV. Further research is warranted to determine the minimum sampling frequency required to obtain valid heart rate/HRV metrics from pulsatile waveforms.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ateyeh Soroush
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Appavu B, Foldes S, Burrows BT, Jacobson A, Abruzzo T, Boerwinkle V, Willyerd A, Mangum T, Gunnala V, Marku I, Adelson PD. Multimodal Assessment of Cerebral Autoregulation and Autonomic Function After Pediatric Cerebral Arteriovenous Malformation Rupture. Neurocrit Care 2021; 34:537-546. [PMID: 32748209 DOI: 10.1007/s12028-020-01058-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Management after cerebral arteriovenous malformation (AVM) rupture aims toward preventing hemorrhagic expansion while maintaining cerebral perfusion to avoid secondary injury. We investigated associations of model-based indices of cerebral autoregulation (CA) and autonomic function (AF) with outcomes after pediatric cerebral AVM rupture. METHODS Multimodal neurologic monitoring data from the initial 3 days after cerebral AVM rupture were retrospectively analyzed in children (< 18 years). AF indices included standard deviation of heart rate (HRsd), root-mean-square of successive differences in heart rate (HRrmssd), low-high frequency ratio (LHF), and baroreflex sensitivity (BRS). CA indices include pressure reactivity index (PRx), wavelet pressure reactivity indices (wPRx and wPRx-thr), pulse amplitude index (PAx), and correlation coefficient between intracranial pressure pulse amplitude and cerebral perfusion pressure (RAC). Percent time of cerebral perfusion pressure (CPP) below lower limits of autoregulation (LLA) was also computed for each CA index. Primary outcomes were determined using Pediatric Glasgow Outcome Score Extended-Pediatrics (GOSE-PEDs) at 12 months and acquired epilepsy. Association of biomarkers with outcomes was investigated using linear regression, Wilcoxon signed-rank, or Chi-square. RESULTS Fourteen children were analyzed. Lower AF indices were associated with poor outcomes (BRS [p = 0.04], HRsd [p = 0.04], and HRrmssd [p = 0.00]; and acquired epilepsy (LHF [p = 0.027]). Higher CA indices were associated with poor outcomes (PRx [p = 0.00], wPRx [p = 0.00], and wPRx-thr [p = 0.01]), and acquired epilepsy (PRx [p = 0.02] and wPRx [p = 0.00]). Increased time below LLA was associated with poor outcome (percent time below LLA based on PRx [p = 0.00], PAx [p = 0.04], wPRx-thr [p = 0.03], and RAC [p = 0.01]; and acquired epilepsy (PRx [p = 0.00], PAx [p = 0.00], wPRx-thr [p = 0.03], and RAC [p = 0.01]). CONCLUSIONS After pediatric cerebral AVM rupture, poor outcomes are associated with AF and CA when applying various neurophysiologic model-based indices. Prospective work is needed to assess these indices of CA and AF in clinical decision support.
Collapse
Affiliation(s)
- Brian Appavu
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA.
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA.
| | - Stephen Foldes
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Brian T Burrows
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
| | - Austin Jacobson
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
| | - Todd Abruzzo
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Varina Boerwinkle
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Anthony Willyerd
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Tara Mangum
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Vishal Gunnala
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - Iris Marku
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| | - P D Adelson
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ, 85016, USA
- Department of Child Health, University Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
14
|
Robertson AD, Papadhima I, Edgell H. Sex differences in the autonomic and cerebrovascular responses to upright tilt. Auton Neurosci 2020; 229:102742. [PMID: 33197693 DOI: 10.1016/j.autneu.2020.102742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023]
Abstract
Sex differences in the regulation of autonomic and cerebrovascular responses to orthostatic stress remain unclear. The objectives of this study were to concurrently investigate autonomic control and cerebrovascular resistance indices, including critical closing pressure (CrCP) and resistance area product (RAP), during upright tilt in men and women. In 13 women and 14 men (18-29 years), ECG, non-invasive blood pressure, middle cerebral artery blood velocity, and end-tidal CO2 (ETCO2) were continuously measured during supine rest and 70° tilt. Heart rate variability (HRV), cardiovagal baroreflex sensitivity (cBRS), and transfer function parameters of dynamic cerebral autoregulation were calculated. Compared to supine, upright tilt increased the low frequency-to-high frequency ratio of HRV in men only (P = 0.044), and decreased cBRS more in women (P = 0.001). Cerebrovascular resistance index (CVRi) increased during tilt only in men (sex-by-time interaction: P = 0.004). RAP was lower in women throughout tilt (main effect of sex: P = 0.022). CrCP decreased during tilt in both sexes (main effect of time: P < 0.001). Normalizing to ETCO2 did not alter the effect of tilt on cerebrovascular resistance. Men displayed a greater increase of sympathetic indices and CVRi during tilt while women had greater parasympathetic withdrawal. We hypothesize that increased sympathetic activity in men may drive sex differences in the cerebrovascular response to upright posture.
Collapse
Affiliation(s)
- Andrew D Robertson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Ismina Papadhima
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Heather Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; Muscle Health Research Centre, York University, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Koehn J, Wang R, de Rojas Leal C, Kallmünzer B, Winder K, Köhrmann M, Kollmar R, Schwab S, Hilz MJ. Neck cooling induces blood pressure increase and peripheral vasoconstriction in healthy persons. Neurol Sci 2020; 41:2521-2529. [PMID: 32219592 PMCID: PMC8197712 DOI: 10.1007/s10072-020-04349-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Introduction Noninvasive temperature modulation by localized neck cooling might be desirable in the prehospital phase of acute hypoxic brain injuries. While combined head and neck cooling induces significant discomfort, peripheral vasoconstriction, and blood pressure increase, localized neck cooling more selectively targets blood vessels that supply the brain, spares thermal receptors of the face and skull, and might therefore cause less discomfort cardiovascular side effects compared to head- and neck cooling. The purpose of this study is to assess the effects of noninvasive selective neck cooling on cardiovascular parameters and cerebral blood flow velocity (CBFV). Methods Eleven healthy persons (6 women, mean age 42 ± 11 years) underwent 90 min of localized dorsal and frontal neck cooling (EMCOOLS Brain.Pad™) without sedation. Before and after cooling onset, and after every 10 min of cooling, we determined rectal, tympanic, and neck skin temperatures. Before and after cooling onset, after 60- and 90-min cooling, we monitored RR intervals (RRI), systolic, diastolic blood pressures (BPsys, BPdia), laser Doppler skin blood flow (SBF) at the index finger pulp, and CBFV at the proximal middle cerebral artery (MCA). We compared values before and during cooling by analysis of variance for repeated measurements with post hoc analysis (significance: p < 0.05). Results Neck skin temperature dropped significantly by 9.2 ± 4.5 °C (minimum after 40 min), while tympanic temperature decreased by only 0.8 ± 0.4 °C (minimum after 50 min), and rectal temperature by only 0.2 ± 0.3 °C (minimum after 60 min of cooling). Index finger SBF decreased (by 83.4 ± 126.0 PU), BPsys and BPdia increased (by 11.2 ± 13.1 mmHg and 8.0 ± 10.1 mmHg), and heart rate slowed significantly while MCA-CBFV remained unchanged during cooling. Conclusions While localized neck cooling prominently lowered neck skin temperature, it had little effect on tympanic temperature but significantly increased BP which may have detrimental effects in patients with acute brain injuries.
Collapse
Affiliation(s)
- Julia Koehn
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Ruihao Wang
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Carmen de Rojas Leal
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Bernd Kallmünzer
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Klemens Winder
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Martin Köhrmann
- Department of Neurology, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rainer Kollmar
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.,Department of Neurology, General Hospital Darmstadt, Grafenstr. 9, 64283, Darmstadt, Germany
| | - Stefan Schwab
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany. .,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Yang X, Hidru TH, Han X, Zhang X, Liu Y, Wang B, Li H, Wu S, Xia YL. Link Between Elevated Long-Term Resting Heart Rate Variability and Pulse Pressure Variability for All-Cause Mortality. J Am Heart Assoc 2020; 9:e014122. [PMID: 32174212 PMCID: PMC7335531 DOI: 10.1161/jaha.119.014122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Elevated long‐term systolic blood pressure and resting heart rate (RHR) variability are suggested to amplify the risk of all‐cause mortality (ACM). However, the link between increased RHR and pulse pressure for ACM remained unclear. Methods and Results This study analyzed 46 751 individuals from Kailuan Cohort Study for the end outcome of ACM. A Cox regression model was used to estimate hazard ratios for death events. Kaplan‐Meier analysis was performed to study the differences in survival as stratified by the SD, coefficient of variation, and average real variability of RHR and pulse pressure quartiles. A total of 1667 deaths (<65 years of age=866/40351, ≥65 years of age=801/6400) were recorded over 4.97±0.69 years follow‐up. Participants under the age of 65 years in the third and fourth quartiles of pulse pressure SD had an independent increase in risk for ACM (hazard ratio [95% CI], 1.16 [1.06–1.28]; and 1.19 [1.05–1.35], respectively). Additionally, participants >65 years of age had a higher risk for ACM across quartiles of RHR‐SD. The hazard ratio (95% CI) for the subjects in quartiles 2, 3, and 4 were 1.81 (1.10–2.97), 2.31 (1.37–1.3.90), and 2.64 (1.63–4.29), respectively. Conclusions An elevated long‐term RHR variability combined with an increased pulse pressure variability or vice versa amplifies the risk of ACM.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Tesfaldet Habtemariam Hidru
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Xu Han
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Xinyuan Zhang
- Department of Nutritional Sciences Pennsylvania State University State College PA
| | - Yang Liu
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Binhao Wang
- Arrhythmia Center Ningbo First Hospital Ningbo Zhejiang China
| | - Huihua Li
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| | - Shouling Wu
- Department of Cardiology Kailuan General Hospital Tangshan Hebei China
| | - Yun-Long Xia
- Department of Cardiology Institute of Cardiovascular Diseases First Affiliated Hospital of Dalian Medical University Dalian Liaoning China
| |
Collapse
|