1
|
Lidén S, Lindam A, Farahmand D, Landtblom A, Laurell K. Decrease of excessive daytime sleepiness after shunt treatment for normal pressure hydrocephalus. J Sleep Res 2025; 34:e14333. [PMID: 39275945 PMCID: PMC11911039 DOI: 10.1111/jsr.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/13/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Sleepiness and apathy are often reported in patients with normal pressure hydrocephalus. However, research on outcomes after shunt surgery has mainly focused on the classical triad symptoms, that is, gait, cognition, and bladder dysfunction. This study aimed to describe the effects of shunt treatment on excessive daytime sleepiness and whether there was a relation to changes in ventricular volume. Pre- and postsurgical excessive daytime sleepiness was investigated using the Epworth sleepiness scale in a sample of 32 patients with normal pressure hydrocephalus who underwent shunt surgery. Data were gathered before surgery and at 1, 2, and 3 months after surgery and with different settings of the shunt. In the total sample, the Epworth sleepiness scale improved by a median of 1.5 points at 1 month after surgery, p = 0.026. The improvement was predominately found in the group (n = 6) with high presurgical daytime sleepiness (Epworth sleepiness scale >12) (median = 12 points, p = 0.035) compared with a median change of 0 points (p = 0.47) in the group with Epworth sleepiness scale ≤12 (n = 26). Between the postsurgical follow-ups, no further change in the Epworth sleepiness scale score was observed. The Epworth sleepiness scale score did not correlate with clinical tests nor with ventricular volume. Daytime sleepiness seems to be another domain of normal pressure hydrocephalus symptomatology in addition to the classical triad that is responsive to treatment, at least when pronounced. The Epworth sleepiness scale is a quick test to administer and could be a valuable addition to pre-surgical screening for treatable symptoms.
Collapse
Affiliation(s)
- Simon Lidén
- Department of Biomedical and Clinical Sciences, NeurologyLinköping UniversityLinköpingSweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development – ÖstersundUmeå UniversityUmeåSweden
| | - Dan Farahmand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anne‐Marie Landtblom
- Department of Biomedical and Clinical Sciences, NeurologyLinköping UniversityLinköpingSweden
- Department of Medical Sciences, NeurologyUppsala UniversityUppsalaSweden
| | - Katarina Laurell
- Department of Biomedical and Clinical Sciences, NeurologyLinköping UniversityLinköpingSweden
| |
Collapse
|
2
|
Fasano A, Iseki C, Yamada S, Miyajima M. What is idiopathic in normal pressure hydrocephalus? J Neurosurg Sci 2025; 69:20-36. [PMID: 40045802 DOI: 10.23736/s0390-5616.24.06363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) can be caused by acquired events - e.g. subarachnoid hemorrhage, meningitis, or trauma - or can be "idiopathic" (iNPH) when no clear cause is identifiable. The entity and nosology of iNPH has received renewed attention and has recently gone through scrutiny and academic debate. EVIDENCE ACQUISITION Authors searched PubMed using the following keywords: "adult hydrocephalus," "alfa synuclein," "Alzheimer's disease," "beta-amyloid," "cerebrospinal fluid," "cilia," "CSF," "genes," "hydrocephalus," "idiopathic," "Lewy Body Dementia," "phosphorylated tau," "shunt responsiveness". EVIDENCE SYNTHESIS During the past decades several studies have reshaped our view of iNPH, examples are the identification of monogenic forms of iNPH caused by genes involved in the structure and function of cilia or the discovery of the glymphatic system. This review will discuss the causes of iNPH and particularly the relationship with neurodegeneration in terms of: 1) coincidental association; 2) iNPH predisposing to neurodegeneration, 3. neurodegeneration predisposing to iNPH, and 4. independent processes (genetic and environmental) predisposing to both. Based on the gathered evidence, a unified model is then presented, characterized by three sequential events: impairment of CSF dynamic, occurrence of reversible signs, occurrence of irreversible signs. CONCLUSIONS Almost 70 years after its description, a growing literature on its basic mechanisms is clarifying that iNPH is a syndrome with pathogenetic mechanisms arising from different causes. The paradigm shift has been recognizing that iNPH is not just a CSF disorder but rather a brain disorder expressing with ventriculomegaly. Finally, the better understanding of what causes iNPH support the proposal of changing its name into "Hakim's disease."
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, ON, Canada -
- Division of Neurology, University of Toronto, Toronto, ON, Canada -
- Krembil Brain Institute, Toronto, ON, Canada -
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy -
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy -
| | - Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan
- Interfaculty Initiative in Information Studies, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| |
Collapse
|
3
|
Regalbuto S, Zangaglia R, Valentino F, Todisco M, Pacchetti C, Cotta Ramusino M, Mazzacane F, Picascia M, Arceri S, Malomo G, Capriglia E, Spelta L, Rubino A, Pisani A, Terzaghi M. Clinical correlates of obstructive sleep apnoea in idiopathic normal pressure hydrocephalus. Eur J Neurol 2024; 31:e16448. [PMID: 39207116 PMCID: PMC11555027 DOI: 10.1111/ene.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND PURPOSE The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) remains controversial. Limited studies have indicated a high prevalence of obstructive sleep apnoea (OSA) amongst iNPH patients. The aim was to investigate the clinical correlates of OSA in iNPH patients. METHODS In this cross-sectional observational study, consecutive iNPH patients were prospectively enrolled. Evaluations included the iNPH Rating Scale, the Movement Disorder Society Unified Parkinson's Disease Rating Scale part III, the time and number of steps to walk 10 m, the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index, a complete neuropsychological evaluation, 3-T brain MRI, full-night video-polysomnography, tap test and cerebrospinal fluid (CSF) neurodegeneration biomarkers. RESULTS Fifty-one patients were screened, of whom 38 met the inclusion criteria. Amongst the recruited patients, 19/38 (50%) exhibited OSA, with 12/19 (63.2%) presenting moderate to severe disorder. OSA+ iNPH patients required more time (p = 0.02) and more steps (p = 0.04) to complete the 10-m walking test, had lower scores on the gait subitem of the iNPH Rating Scale (p = 0.04) and demonstrated poorer performance on specific neuropsychological tests (Rey Auditory Verbal Learning Test immediate recall, p = 0.03, and Rey-Osterrieth Complex Figure, p = 0.01). Additionally, OSA+ iNPH patients had higher levels of total tau (p = 0.02) and phospho-tau (p = 0.03) in their CSF but no statistically significant differences in beta-amyloid (1-42) levels compared to OSA- iNPH patients. CONCLUSION Obstructive sleep apnoea is highly prevalent in iNPH patients, particularly at moderate to severe levels. OSA is associated with worse motor and cognitive performance in iNPH. The CSF neurodegeneration biomarker profile observed in OSA+ iNPH patients may reflect OSA-induced impairment of cerebral fluid dynamics.
Collapse
Affiliation(s)
- Simone Regalbuto
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
| | | | | | | | | | - Matteo Cotta Ramusino
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Federico Mazzacane
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Marta Picascia
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
| | | | - Gaetano Malomo
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Elena Capriglia
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Laura Spelta
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
| | - Annalisa Rubino
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
| | - Antonio Pisani
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Michele Terzaghi
- IRCCS Mondino FoundationNational Neurological InstitutePaviaItaly
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| |
Collapse
|
4
|
Wang W, Liu M, Wang Z, Ma L, Zhao Y, Ye W, Li X. A Bidirectional Mendelian Randomization Study of the Causal Association Between Ischemic Stroke, Coronary Heart Disease, and Hydrocephalus. Brain Behav 2024; 14:e70090. [PMID: 39378279 PMCID: PMC11460635 DOI: 10.1002/brb3.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The association among coronary heart disease, ischemic stroke, and hydrocephalus remains ambiguous. OBJECTIVES There is a need for a Mendelian randomization study to evaluate the underlying causality between coronary heart disease, ischemic stroke, and hydrocephalus. METHODS The data source utilized genome-wide association studies, employing a threshold of p < 5 × 10-8 to identify single nucleotide polymorphisms strongly linked to ischemic stroke and coronary heart disease as instrumental variables (IVs). Five methods-inverse variance weighted (IVW), Mendelian randomization (MR) Egger, Weighted Median, Weighted mode, and Simple mode-utilized the selected IVs to estimate the causality between ischemic stroke, coronary heart disease, and hydrocephalus. RESULTS The IVW demonstrated that ischemic stroke and coronary heart disease serve as risk factors for hydrocephalus (odds ratio [OR] = 1.650, 95% CI: 1.066-2.554, p = 0.025; OR = 1.307, 95% CI: 1.023-1.668, p = 0.032). Both the MR-Egger intercept test and Cochran's Q test affirmed the relative reliability of the IVW analysis results. However, no evidence of a reverse causation was observed between hydrocephalus and coronary heart disease or ischemic stroke. CONCLUSIONS Coronary heart disease and Ischemic stroke may increase the risk of hydrocephalus.
Collapse
Affiliation(s)
- Wencai Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Menghao Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Zun Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Luyao Ma
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Yongqiang Zhao
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Wei Ye
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Xianfeng Li
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| |
Collapse
|
5
|
Pearce RKB, Gontsarova A, Richardson D, Methley AM, Watt HC, Tsang K, Carswell C. Shunting for idiopathic normal pressure hydrocephalus. Cochrane Database Syst Rev 2024; 8:CD014923. [PMID: 39105473 PMCID: PMC11301990 DOI: 10.1002/14651858.cd014923.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Normal pressure hydrocephalus (NPH) occurs when the brain ventricles expand, causing a triad of gait, cognitive, and urinary impairment. It can occur after a clear brain injury such as trauma, but can also occur without a clear cause (termed idiopathic, or iNPH). Non-randomised studies have shown a benefit from surgically diverting ventricular fluid to an area of lower pressure by cerebrospinal fluid (CSF)-shunting in iNPH, but historically there have been limited randomised controlled trial (RCT) data to confirm this. OBJECTIVES To determine the effect of CSF-shunting versus no CSF-shunting in people with iNPH and the frequency of adverse effects of CSF-shunting in iNPH. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid SP), Embase (Ovid SP), PsycINFO (Ovid SP), CINAHL (EBSCOhost), Web of Science Core Collection (Clarivate), LILACS (BIREME), ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform on 15 February 2023. SELECTION CRITERIA We included only RCTs of people who had symptoms of gait, cognitive, or urinary impairment with communicating hydrocephalus (Evans index of > 0.3) and normal CSF pressure. Control groups included those with no CSF shunts or those with CSF shunts that were in 'inactive' mode. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. Where necessary, we contacted study authors requesting data not provided in the papers. We assessed the overall certainty of the evidence using GRADE. MAIN RESULTS We included four RCTs, of which three were combined in a meta-analysis. The four RCTs included 140 participants (73 with immediate CSF-shunting and 67 controls who had delayed CSF-shunting) with an average age of 75 years. Risk of bias was low in all parallel-group outcomes evaluated apart from gait speed, cognitive function (general cognition and Symbol Digit Test) (some concerns) and adverse events, which were not blind-assessed. CSF-shunting probably improves gait speed at less than six months post-surgery (standardised mean difference (SMD) 0.62, 95% confidence interval (CI) 0.24 to 0.99; 3 studies, 116 participants; moderate-certainty evidence). CSF-shunting may improve qualitative gait function at less than six months post-surgery by an uncertain amount (1 study, 88 participants; low-certainty evidence). CSF-shunting probably results in a large reduction of disability at less than six months post-surgery (risk ratio 2.08, 95% CI 1.31 to 3.31; 3 studies, 118 participants; moderate-certainty evidence). The evidence is very uncertain about the effect of CSF-shunting on cognitive function at less than six months post-CSF-shunt surgery (SMD 0.35, 95% CI -0.04 to 0.74; 2 studies, 104 participants; very low-certainty evidence). The evidence is also very uncertain about the effect of CSF-shunt surgery on adverse events (1 study, 88 participants; very low-certainty evidence). There were no data regarding the effect of CSF-shunting on quality of life. AUTHORS' CONCLUSIONS We found moderate-certainty evidence that CSF-shunting likely improves gait speed and disability in iNPH in the relative short term. The evidence is very uncertain regarding cognition and adverse events. There were no longer-term RCT data for any of our prespecified outcomes. More studies are required to improve the certainty of these findings. In addition, more information is required regarding patient ethnicity and the effect of CSF-shunting on quality of life.
Collapse
Affiliation(s)
- Ronald K B Pearce
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Davina Richardson
- Department of Neurophysiotherapy, Imperial College Healthcare NHS Trust, London, UK
| | - Abigail M Methley
- Department of Clinical Neuropsychology, North Staffordshire Combined Healthcare NHS Trust, Stoke-On-Trent, UK
| | - Hilary Clare Watt
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Kevin Tsang
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Christopher Carswell
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Kemiläinen B, Kaarniranta K, Leinonen V. Ventriculoperitoneal shunt patients and glaucoma: a cohort analysis of the NPH registry. Fluids Barriers CNS 2024; 21:54. [PMID: 38982476 PMCID: PMC11232130 DOI: 10.1186/s12987-024-00558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Idiopathic Normal Pressure Hydrocephalus (iNPH) is a chronic condition affecting the elderly. It is characterized by a triad of symptoms and radiological findings. Glaucoma is the leading cause of irreversible blindness worldwide. Earlier studies have proposed that the rate of glaucoma is higher in iNPH patients, and of a possible link between ventriculoperitoneal shunt (VP) treatment and the development of glaucoma. OBJECTIVES This study aimed to determine the prevalence of glaucoma among iNPH patients and assess the impact of VPs on glaucoma prevalence. METHODS A cohort study was conducted at Kuopio University Hospital (KUH), including 262 patients with a ventriculoperitoneal shunt. Clinical data were obtained from the Kuopio NPH Registry and medical records. Patients were grouped by iNPH status: iNPH (+) - probable/possible iNPH (n = 192), and iNPH (-) - other causes of hydrocephalus (congenital, secondary, obstructive) (n = 70). We conducted statistical analysis using the Independent Samples T-test, Fisher's exact test, and Pearson Chi-Square. We compared demographics, glaucoma prevalence, brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) as well as comorbidities for hypertension and diabetes medication. Age stratification assessed glaucoma prevalence in the full cohort. RESULTS Both iNPH (+) and iNPH (-) groups had comparable demographic and comorbidity profiles. The prevalence of glaucoma in the iNPH (+) group was 11.5% (n = 22) and 11.4% (n = 8) in the iNPH (-) group without a statistically significant difference (p = 1.000). Brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) were similar. CONCLUSIONS Neither shunted iNPH patients nor those with a comorbid condition other than iNPH showed a markedly higher prevalence of glaucoma. Instead, both groups exhibited age-related increases in glaucoma prevalence, similar to the trends observed in population-based studies. Our data does not suggest a correlation between VP shunts and an elevated rate of glaucoma.
Collapse
Affiliation(s)
- Benjam Kemiläinen
- Neurosurgery of NeuroCenter, Unit of Neurosurgery, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Unit of Neurosurgery, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Abstract
The brain is a complex organ, fundamentally changing across the day to perform basic functions like sleep, thought, and regulating whole-body physiology. This requires a complex symphony of nutrients, hormones, ions, neurotransmitters and more to be properly distributed across the brain to maintain homeostasis throughout 24 hours. These solutes are distributed both by the blood and by cerebrospinal fluid. Cerebrospinal fluid contents are distinct from the general circulation because of regulation at brain barriers including the choroid plexus, glymphatic system, and blood-brain barrier. In this review, we discuss the overlapping circadian (≈24-hour) rhythms in brain fluid biology and at the brain barriers. Our goal is for the reader to gain both a fundamental understanding of brain barriers alongside an understanding of the interactions between these fluids and the circadian timing system. Ultimately, this review will provide new insight into how alterations in these finely tuned clocks may lead to pathology.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
8
|
Riedel CS, Martinez-Tejada I, Andresen M, Wilhjelm JE, Jennum P, Juhler M. Transient intracranial pressure elevations (B waves) are associated with sleep apnea. Fluids Barriers CNS 2023; 20:69. [PMID: 37784168 PMCID: PMC10544378 DOI: 10.1186/s12987-023-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Repetitive transient intracranial pressure waveform elevations up to 50 mmHg (ICP B-waves) are often used to define pathological conditions and determine indications for ICP-reducing treatment. We recently showed that nocturnal transient ICP elevations are present in patients without structural brain lesions or hydrocephalus in whom they are associated with sleep apnea. However, whether this signifies a general association between ICP macropatterns and sleep apnea remains unknown. METHODS We included 34 patients with hydrocephalus, or idiopathic intracranial hypertension (IIH), who were referred to the Neurosurgical Department, Copenhagen, Denmark, from 2017 to 2021. Every patient underwent diagnostic overnight ICP monitoring for clinical indications, with simultaneous polysomnography (PSG) sleep studies. All transient ICP elevations were objectively quantified in all patients. Three patients were monitored with continuous positive airway pressure (CPAP) treatment for an additional night. RESULTS All patients had transient ICP elevations associated with sleep apnea. The mean temporal delay from sleep apnea to transient ICP elevations for all patients was 3.6 s (SEM 0.2 s). Ramp-type transient ICP elevations with a large increase in ICP were associated with rapid eye movement (REM) sleep and sinusoidal-type elevations with non-REM (NREM) sleep. In three patients treated with CPAP, the treatment reduced the number of transient ICP elevations with a mean of 37%. CPAP treatment resulted in insignificant changes in the average ICP in two patients but elevated the average ICP during sleep in one patient by 5.6 mmHg. CONCLUSION The findings suggest that sleep apnea causes a significant proportion of transient ICP elevations, such as B-waves, and sleep apnea should be considered in ICP evaluation. Treatment of sleep apnea with CPAP can reduce the occurrence of transient ICP elevations. More research is needed on the impact of slow oscillating mechanisms on transient ICP elevations during high ICP and REM sleep.
Collapse
Affiliation(s)
- Casper Schwartz Riedel
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen East, 2100, Copenhagen, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | - Isabel Martinez-Tejada
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen East, 2100, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Andresen
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen East, 2100, Copenhagen, Denmark
| | - Jens E Wilhjelm
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen East, 2100, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Yamada S, Ito H, Tanikawa M, Ii S, Otani T, Wada S, Oshima M, Watanabe Y, Mase M. Age-Related Changes in Cerebrospinal Fluid Dynamics in the Pathogenesis of Chronic Hydrocephalus in Adults. World Neurosurg 2023; 178:351-358. [PMID: 37516143 DOI: 10.1016/j.wneu.2023.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Cerebrospinal fluid (CSF) dynamics has dramatically changed in this century. In the latest concept of CSF dynamics, CSF is thought to be produced mainly from interstitial fluid excreted from the brain parenchyma and is absorbed in the meningeal lymphatics. Moreover, CSF does not always flow from the ventricles to the subarachnoid space unidirectionally through the foramina of Magendie and Luschka. In an environment of increased intracranial CSF in idiopathic normal pressure hydrocephalus, CSF freely moves through the inferior choroidal point of the choroidal fissure, which interfaces between the inferior horn of the lateral ventricles and the ambient cistern and through the velum interpositum between the third ventricle and the quadrigeminal cistern. The structure of the hippocampus adjacent to the inferior part of the choroidal fissure may be important in preventing the accumulation of waste products in the hippocampus. A recent imaging technology for CSF dynamics, such as four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging, can visualize and quantify the pulsatile complex CSF motion in clinical usage. We present the current concepts of CSF dynamics with advanced magnetic resonance imaging techniques, which will be helpful in the management and understanding of the pathogenesis of chronic hydrocephalus in adults.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan; Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan
| |
Collapse
|
10
|
Ye S, Feng K, Li Y, Liu S, Wu Q, Feng J, Liao X, Jiang C, Liang B, Yuan L, Chen H, Huang J, Yang Z, Lu Z, Li H. High homocysteine is associated with idiopathic normal pressure hydrocephalus in deep perforating arteriopathy: a cross-sectional study. BMC Geriatr 2023; 23:382. [PMID: 37344765 PMCID: PMC10286484 DOI: 10.1186/s12877-023-03991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/22/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus (iNPH) remain unclear. Homocysteine may reduce the compliance of intracranial arteries and damage the endothelial function of the blood-brain barrier (BBB), which may be the underlying mechanism of iNPH. The overlap cases between deep perforating arteriopathy (DPA) and iNPH were not rare for the shared risk factors. We aimed to investigate the relationship between serum homocysteine and iNPH in DPA. METHODS A total of 41 DPA patients with iNPH and 49 DPA patients without iNPH were included. Demographic characteristics, vascular risk factors, laboratory results, and neuroimaging data were collected. Multivariable logistic regression analysis was performed to investigate the relationship between serum homocysteine and iNPH in DPA patients. RESULTS Patients with iNPH had significantly higher homocysteine levels than those without iNPH (median, 16.34 mmol/L versus 14.28 mmol/L; P = 0.002). There was no significant difference in CSVD burden scores between patients with iNPH and patients without iNPH. Univariate logistic regression analysis demonstrated that patients with homocysteine levels in the Tertile3 were more likely to have iNPH than those in the Tertile1 (OR, 4.929; 95% CI, 1.612-15.071; P = 0.005). The association remained significant after multivariable adjustment for potential confounders, including age, male, hypertension, diabetes mellitus, atherosclerotic cardiovascular disease (ASCVD) or hypercholesterolemia, and eGFR level. CONCLUSION Our study indicated that high serum homocysteine levels were independently associated with iNPH in DPA. However, further research is needed to determine the predictive value of homocysteine and to confirm the underlying mechanism between homocysteine and iNPH.
Collapse
Affiliation(s)
- Shisheng Ye
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Kaiyan Feng
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Yizhong Li
- Department of Radiology, Maoming People's Hospital, Maoming, China
| | - Sanxin Liu
- Department of Neurology, the third affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiaoling Wu
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Jinwen Feng
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Xiaorong Liao
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Chunmei Jiang
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Bo Liang
- Department of Radiology, Maoming People's Hospital, Maoming, China
| | - Li Yuan
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Hai Chen
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Jinbo Huang
- Department of Neurology, Maoming People's Hospital, Maoming, China
- Department of Neurology, Maoming maternal and child health Hospital, Maoming, China
| | - Zhi Yang
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Zhengqi Lu
- Department of Neurology, the third affiliated hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hao Li
- Department of Neurology, Maoming People's Hospital, Maoming, China.
| |
Collapse
|
11
|
Deng Z, Wang H, Huang K, Li Y, Ran Y, Chen Y, Zhou L. Association between vascular risk factors and idiopathic normal pressure hydrocephalus: a Mendelian randomization study. J Neurol 2023; 270:2724-2733. [PMID: 36773060 DOI: 10.1007/s00415-023-11604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH. METHODS We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum likelihood, and MR Egger regression methods for sensitivity analyses. RESULTS We found that genetically predicting essential hypertension (OR = 1.608 (1.330-1.944), p = 0.013) and increased sleep duration (OR = 16.395 (5.624-47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes (OR = 0.869 (0.828-0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evidence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 diabetes were significantly associated with iNPH. CONCLUSION In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.
Collapse
Affiliation(s)
- Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Ran
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Carswell C. Idiopathic normal pressure hydrocephalus: historical context and a contemporary guide. Pract Neurol 2023; 23:15-22. [PMID: 36162853 DOI: 10.1136/pn-2021-003291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 02/02/2023]
Abstract
Idiopathic normal pressure hydrocephalus (NPH) was described in 1965 as a syndrome in which hydrocephalus develops but with a normal cerebrospinal fluid (CSF) pressure, causing shunt-responsive gait apraxia, cognitive impairment and urinary incontinence. Not all patients respond to shunting despite having the clinical syndrome with appropriate radiological features. This has led to considerable debate over subsequent decades regarding idiopathic NPH. It is now understood that asymptomatic communicating hydrocephalus can develop in many healthy older people, and that over time this can develop into a symptomatic state that sometimes responds to CSF shunting, but to a variable extent. This review looks at the historical background of NPH, the use of predictive tests, the current state of clinical evidence for the diagnosis and treatment of idiopathic NPH and the possible underlying causes, to provide a contemporary practical guide for assessing patients with the radiological features of idiopathic NPH.
Collapse
Affiliation(s)
- Christopher Carswell
- Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
13
|
Faryami A, Menkara A, Viar D, Harris CA. Testing and validation of reciprocating positive displacement pump for benchtop pulsating flow model of cerebrospinal fluid production and other physiologic systems. PLoS One 2022; 17:e0262372. [PMID: 35550626 PMCID: PMC9098063 DOI: 10.1371/journal.pone.0262372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The flow of physiologic fluids through organs and organs systems is an integral component of their function. The complex fluid dynamics in many organ systems are still not completely understood, and in-vivo measurements of flow rates and pressure provide a testament to the complexity of each flow system. Variability in in-vivo measurements and the lack of control over flow characteristics leave a lot to be desired for testing and evaluation of current modes of treatments as well as future innovations. In-vitro models are particularly ideal for studying neurological conditions such as hydrocephalus due to their complex pathophysiology and interactions with therapeutic measures. The following aims to present the reciprocating positive displacement pump, capable of inducing pulsating flow of a defined volume at a controlled beat rate and amplitude. While the other fluidic applications of the pump are currently under investigation, this study was focused on simulating the pulsating cerebrospinal fluid production across profiles with varying parameters. METHODS Pumps were manufactured using 3D printed and injection molded parts. The pumps were powered by an Arduino-based board and proprietary software that controls the linear motion of the pumps to achieve the specified output rate at the desired pulsation rate and amplitude. A range of 0.01 [Formula: see text] to 0.7 [Formula: see text] was tested to evaluate the versatility of the pumps. The accuracy and precision of the pumps' output were evaluated by obtaining a total of 150 one-minute weight measurements of degassed deionized water per output rate across 15 pump channels. In addition, nine experiments were performed to evaluate the pumps' control over pulsation rate and amplitude. RESULTS Volumetric analysis of a total of 1200 readings determined that the pumps achieved the target output volume rate with a mean absolute error of -0.001034283 [Formula: see text] across the specified domain. It was also determined that the pumps can maintain pulsatile flow at a user-specified beat rate and amplitude. CONCLUSION The validation of this reciprocating positive displacement pump system allows for the future validation of novel designs to components used to treat hydrocephalus and other physiologic models involving pulsatile flow. Based on the promising results of these experiments at simulating pulsatile CSF flow, a benchtop model of human CSF production and distribution could be achieved through the incorporation of a chamber system and a compliance component.
Collapse
Affiliation(s)
- Ahmad Faryami
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Adam Menkara
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Daniel Viar
- Department of Computer Science and Engineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carolyn A. Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, Detroit, MI, United States of America
| |
Collapse
|
14
|
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To determine the effect of cerebrospinal fluid (CSF) shunting versus no CSF shunting in people with idiopathic normal pressure hydrocephalus (iNPH). To determine the frequency of adverse effects of CSF shunting in iNPH
Collapse
|
15
|
Li J, Zhang X, Guo J, Yu C, Yang J. Molecular Mechanisms and Risk Factors for the Pathogenesis of Hydrocephalus. Front Genet 2022; 12:777926. [PMID: 35047005 PMCID: PMC8762052 DOI: 10.3389/fgene.2021.777926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus is a neurological condition due to the aberrant circulation and/or obstruction of cerebrospinal fluid (CSF) flow with consequent enlargement of cerebral ventricular cavities. However, it is noticed that a lot of patients may still go through symptomatic progression despite standard shunting procedures, suggesting that hydrocephalus is far more complicated than a simple CSF circulative/obstructive disorder. Growing evidence indicates that genetic factors play a fundamental role in the pathogenesis of some hydrocephalus. Although the genetic research of hydrocephalus in humans is limited, many genetic loci of hydrocephalus have been defined in animal models. In general, the molecular abnormalities involved in the pathogenesis of hydrocephalus include brain development and ependymal cell dysfunction, apoptosis, inflammation, free radical generation, blood flow, and cerebral metabolism. Moreover, recent studies have indicated that the molecular abnormalities relevant to aberrant cerebral glymphatic drainage turn into an attractive subject in the CSF circulation disorder. Furthermore, the prevalent risk factors could facilitate the development of hydrocephalus. In this review, we elicited some possible fundamental molecular mechanisms and facilitating risk factors involved in the pathogenesis of hydrocephalus, and aimed to widen the diagnosis and therapeutic strategies for hydrocephalus management. Such knowledge could be used to improve patient care in different ways, such as early precise diagnosis and effective therapeutic regimens.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Guo
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Yu
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Yang
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Riedel CS, Milan JB, Juhler M, Jennum P. Sleep-Disordered Breathing is frequently associated with idiopathic normal pressure hydrocephalus but not other types of hydrocephalus. Sleep 2021; 45:6421434. [PMID: 34739077 DOI: 10.1093/sleep/zsab265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Previous studies have shown sleep-disordered breathing (SDB) to be highly prevalent in patients with idiopathic normal pressure hydrocephalus (iNPH). The current study aimed to estimate and compare the prevalence of SDB in patients with different types of hydrocephalus and test if SDB was associated with changed CO2. METHODS We investigated the prevalence of SDB in a prospective cohort of 48 hydrocephalus patients with nocturnal polysomnography (PSG). Twenty-three of the patients also had simultaneous CO2 measurements. RESULTS The prevalence of SDB was high in patients with iNPH, with moderate-to-severe SDB in 21/22 (96%) of the patients and an apnea-hypopnea index (AHI) of 43.5 (95% CI 33.8-52.2). Patients with pediatric-onset hydrocephalus had moderate-to-severe SDB in 7/16 (44%), with an AHI of 16.1 (95% CI 8.16-23.8). Except for one patient, all patients with adult-onset obstructive hydrocephalus (9/10) had normal respiration or mild SDB with an AHI of 8.4 (95% CI 5.5-10.5). None of the 23 patients measured with CO2 had elevated CO2 associated with SDB and had normal CO2 during sleep, with 40.8 ± 5.5 mmHg, 42.7 ± 4.1 mmHg, 34.5-45.8 mmHg for patients with iNPH, pediatric-onset, and adult-onset, respectively. CONCLUSION We found a high prevalence of SDB in patients with iNPH, confirming previous findings. We extended this with the finding that the prevalence of SDB in patients with other types of hydrocephalus is not significantly different from that in the general population. Additionally, we did not find elevations of CO2 associated with SDB or CO2 retention during sleep.
Collapse
Affiliation(s)
- Casper Schwartz Riedel
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Joachim Birch Milan
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS 2021; 18:20. [PMID: 33874972 PMCID: PMC8056523 DOI: 10.1186/s12987-021-00243-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/13/2021] [Indexed: 11/15/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
18
|
Riedel CS, Martinez-Tejada I, Norager NH, Kempfner L, Jennum P, Juhler M. B-waves are present in patients without intracranial pressure disturbances. J Sleep Res 2020; 30:e13214. [PMID: 33155362 DOI: 10.1111/jsr.13214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Intracranial pressure (ICP) B-waves are defined as short, repeating elevations of ICP of up to 50 mmHg with a frequency of 0.5-2 waves/min. The presence of B-waves in overnight recordings is regarded as a pathological phenomenon. However, the physiology of B-waves is still not fully understood and studies with transcranial Doppler, as a surrogate marker for ICP, have suggested that B-waves could be a normal physiological phenomenon. We present four patients without known structural neurological disease other than a coincidentally found unruptured intracranial aneurysm. One of the patients had experienced well-controlled epilepsy for several years, but was included because ICP under these conditions is unlikely to be abnormal. Following informed consent, all four patients had a telemetric ICP probe implanted during a prophylactic operation with closure of the aneurysm. They underwent overnight ICP monitoring with simultaneous polysomnography (PSG) sleep studies at 8 weeks after the operation. These patients exhibited nocturnal B-waves, but did not have major structural brain lesions. Their ICP values were within the normal range. Nocturnal B-waves occurred in close association with sleep-disordered breathing (SDB) in rapid eye movement (REM) and non-REM sleep stages. SDB during REM sleep was associated with ramp-type B-waves; SDB during non-REM sleep was associated with the sinusoidal type of B-wave. We propose that B-waves are a physiological phenomenon associated with SDB and that the mechanical changes during respiration could have an essential and previously unrecognised role in the generation of B-waves.
Collapse
Affiliation(s)
- Casper Schwartz Riedel
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Isabel Martinez-Tejada
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Lykke Kempfner
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Fasano A, Espay AJ, Tang-Wai DF, Wikkelsö C, Krauss JK. Gaps, Controversies, and Proposed Roadmap for Research in Normal Pressure Hydrocephalus. Mov Disord 2020; 35:1945-1954. [PMID: 32959936 DOI: 10.1002/mds.28251] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus is considered common but remains underinvestigated. There are no uniformly accepted diagnostic criteria and therapeutic guidelines. We summarize the accumulated evidence regarding the definition, pathophysiology, diagnosis, and treatment of idiopathic normal pressure hydrocephalus, highlighting the many gaps and controversies, including diagnostic challenges, the frequent association with neurodegeneration and vascular disease, and the many unknowns regarding patient selection and outcome predictors. A roadmap to fill these gaps and solve the controversies around this condition is also proposed. More evidence is required with respect to diagnostic criteria, the value of ancillary testing, prospective population-based studies and novel trial designs. Furthermore, a need exists to develop new advanced options in shunt technology. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada.,Howard Cohen Normal Pressure Hydrocephalus Program, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - David F Tang-Wai
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Howard Cohen Normal Pressure Hydrocephalus Program, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada.,University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Carsten Wikkelsö
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
20
|
Macki M, Mahajan A, Shatz R, Air EL, Novikova M, Fakih M, Elmenini J, Kaur M, Bouchard KR, Funk BA, Schwalb JM. Prevalence of Alternative Diagnoses and Implications for Management in Idiopathic Normal Pressure Hydrocephalus Patients. Neurosurgery 2020; 87:999-1007. [DOI: 10.1093/neuros/nyaa199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Following Bayes theorem, ventriculomegaly and ataxia confer only a 30% chance of idiopathic Normal Pressure Hydrocephalus (NPH). When coupled with positive responses to best diagnostic testing (extended lumbar drainage), 70% of patients recommended for shunting will not actually have NPH. This is inadequate clinical care.
OBJECTIVE
To determine the proportion of alternative and treatable diagnoses in patients referred to a multidisciplinary NPH clinic.
METHODS
Patients without previously diagnosed NPH were queried from prospectively collected data. At least 1 neurosurgeon, cognitive neurologist, and neuropsychologist jointly formulated best treatment plans.
RESULTS
Of 328 total patients, 45% had an alternative diagnosis; 11% of all patients improved with treatment of an alternative diagnosis. Of 87 patients with treatable conditions, the highest frequency of pathologies included sleep disorders, and cervical stenosis, followed by Parkinson disease. Anti-cholinergic burden was a contributor for multiple patients. Of 142 patients undergoing lumbar puncture, 71% had positive responses and referred to surgery. Compared to NPH patients, mimickers were statistically significantly older with lower Montreal Cognitive Assessment (MoCA) score and worse gait parameters. Overall, 26% of the original patients underwent shunting. Pre-post testing revealed a statistically significant improved MoCA score and gait parameters in those patients who underwent surgery with follow-up.
CONCLUSION
Because the Multidisciplinary NPH Clinic selected only 26% for surgery (corroborating 30% in Bayes theorem), an overwhelming majority of patients with suspected NPH will harbor alternative diagnoses. Identification of contributing/confounding conditions will support the meticulous work-up necessary to appropriately manage patients without NPH while optimizing clinical responses to shunting in correctly diagnosed patients.
Collapse
Affiliation(s)
- Mohamed Macki
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| | - Abhimanyu Mahajan
- Department of Neurology and Rehabilitation Medicine, The University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rhonna Shatz
- Department of Neurology and Rehabilitation Medicine, The University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ellen L Air
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| | - Marina Novikova
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Mohamed Fakih
- Wayne State University School of Medicine, Detroit, Michigan
| | - Jaafar Elmenini
- Wayne State University School of Medicine, Detroit, Michigan
| | - Manpreet Kaur
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Kenneth R Bouchard
- Department of Otolaryngology, Division of Audiology, Henry Ford West Bloomfield Hospital, West Bloomfield, Michigan
| | - Brent A Funk
- Department of Behavioral Health, Division of Neuropsychology, Henry Ford Health System, Detroit, Michigan
| | - Jason M Schwalb
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
21
|
Renjen P, Gupta C, Chaudhari D, Mishra A. Diagnosis, pathophysiology, and treatment of normal pressure hydrocephalus: A review of current perspectives. APOLLO MEDICINE 2020. [DOI: 10.4103/am.am_7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Román GC, Jackson RE, Fung SH, Zhang YJ, Verma AK. Sleep-Disordered Breathing and Idiopathic Normal-Pressure Hydrocephalus: Recent Pathophysiological Advances. Curr Neurol Neurosci Rep 2019; 19:39. [PMID: 31144048 PMCID: PMC6541578 DOI: 10.1007/s11910-019-0952-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of Review Idiopathic normal-pressure hydrocephalus (iNPH) is characterized clinically by ventriculomegaly, abnormal gait, falls, incontinence, and cognitive decline. This article reviews recent advances in the pathophysiology of iNPH concerning sleep-disordered breathing (SDB) and glymphatic circulation during deep sleep. Recent Findings The authors found iNPH frequently associated with obstructive sleep apnea (OSA). A critical factor in iNPH is intracranial venous hypertension delaying drainage of cerebrospinal fluid (CSF) into the cerebral venous sinuses. CSF-venous blood circulates in the jugular veins and finally drains into the heart. During SDB, repeated reflex attempts to breathe induce strong respiratory efforts against a closed glottis thereby increasing the negative intrathoracic pressure. This causes atrial distortion and decreases venous return to the heart resulting in retrograde intracranial venous hypertension. Additionally, repeated awakenings from OSA impede sleep-associated circulation of interstitial CSF into the glymphatic circulation contributing to hydrocephalus. Summary Sleep has become a critical element in the cognitive changes of aging including iNPH.
Collapse
Affiliation(s)
- Gustavo C Román
- Department of Neurology, Methodist Neurological Institute and Houston Methodist Hospital Research Institute for Academic Medicine, Houston, TX, USA. .,Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Robert E Jackson
- Department of Medicine, Houston Methodist Hospital and Houston Research Institute for Academic Medicine, Houston, TX, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Steve H Fung
- Department of Radiology MRI Core, Houston Methodist Hospital and Methodist Research Institute for Academic Medicine, Houston, TX, USA.,Department of Radiology Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Y Jonathan Zhang
- Department of Neurosurgery, Methodist Neurological Institute and Houston Methodist Hospital Research Institute for Academic Medicine, Houston, TX, USA.,Department of Neurosurgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aparajitha K Verma
- Department of Neurology, Methodist Neurological Institute and Houston Methodist Hospital Research Institute for Academic Medicine, Houston, TX, USA.,Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA.,Sleep Laboratory Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Oliveira LM, Nitrini R, Román GC. Normal-pressure hydrocephalus: A critical review. Dement Neuropsychol 2019; 13:133-143. [PMID: 31285787 PMCID: PMC6601311 DOI: 10.1590/1980-57642018dn13-020001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Normal-pressure hydrocephalus (NPH) is a potentially reversible syndrome characterized by enlarged cerebral ventricles (ventriculomegaly), cognitive impairment, gait apraxia and urinary incontinence. A critical review of the concept, pathophysiology, diagnosis, and treatment of both idiopathic and secondary NPH was conducted. We searched Medline and PubMed databases from January 2012 to December 2018 using the keywords "normal-pressure hydrocephalus" / "idiopathic normal-pressure hydrocephalus" / "secondary normal-pressure hydrocephalus" / "NPH" / "ventriculoperitoneal shunt". The initial search produced 341 hits. After careful selection, a total of 54 articles were chosen and additional relevant studies were included during the process of writing this article. NPH is an important cause of potentially reversible dementia, frequent falls and recurrent urinary infections in the elderly. The clinical and imaging features of NPH may be incomplete or nonspecific, posing a diagnostic challenge for medical doctors and often requiring expert assessment to minimize unsuccessful surgical treatments. Recent advances resulting from the use of non-invasive MRI methods for quantifying cerebral blood flow, in particular arterial spin-labeling (ASL), and the frequent association of NPH and obstructive sleep apnea (OSA), offer new avenues to understand and treat NPH.
Collapse
Affiliation(s)
- Louise Makarem Oliveira
- Medical Student, School of Medicine, Federal University of Amazonas
(UFAM), Manaus, AM, Brazil
| | - Ricardo Nitrini
- Professor of Neurology, Department of Neurology, University of São
Paulo Medical School, São Paulo, SP, Brazil
| | - Gustavo C. Román
- The Jack S. Blanton Distinguished Endowed Chair, Neurological
Institute Houston, Methodist Hospital, Professor of Neurology Weill Cornell Medical
College Methodist Neurological Institute, USA
| |
Collapse
|
24
|
Obstructive sleep apnea in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2019; 397:155. [DOI: 10.1016/j.jns.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
|
25
|
Román GC, Verma AK, Zhang YJ, Fung SH. Reply: Letter to The Editor on “Idiopathic normal-pressure hydrocephalus and obstructive sleep apnea are frequently associated: A prospective cohort study” Journal of the Neurological Sciences 395 (2018) 164–168. J Neurol Sci 2019; 397:173. [DOI: 10.1016/j.jns.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|