1
|
Sellung D, Heil L, Daya N, Jacobsen F, Mertens-Rill J, Zhuge H, Döring K, Piran M, Milting H, Unger A, Linke WA, Kley R, Preusse C, Roos A, Fürst DO, Ven PFMVD, Vorgerd M. Novel Filamin C Myofibrillar Myopathy Variants Cause Different Pathomechanisms and Alterations in Protein Quality Systems. Cells 2023; 12:cells12091321. [PMID: 37174721 PMCID: PMC10177260 DOI: 10.3390/cells12091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.
Collapse
Affiliation(s)
- Dominik Sellung
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Misagh Piran
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, 46325 Borken, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
2
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
3
|
Velardo D, D'Angelo MG, Citterio A, Panzeri E, Napoli L, Cinnante C, Moggio M, Comi GP, Ronchi D, Bassi MT. Case Reports: Novel Missense Variants in the Filamin C Actin Binding Domain Cause Variable Phenotypes. Front Neurol 2022; 13:930039. [PMID: 35903116 PMCID: PMC9315448 DOI: 10.3389/fneur.2022.930039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Filamin C is a large dimeric actin-binding protein, most prevalent in skeletal and cardiac muscle Z-discs, where it participates in sarcomere mechanical stabilization and intracellular signaling, interacting with numerous binding partners. Dominant heterozygous mutations of Filamin C gene cause several forms of myopathy and structural or arrhythmogenic cardiomyopathy. In this report we describe clinical and molecular findings of two Italian patients, in whom we identified two novel missense variants located within the Filamin C actin binding domain. Muscle imaging, histological and ultrastructural findings are also reported. Our results underline the extreme inter- and intrafamilial variability of clinical manifestations, hence the need to extend the investigation also to asymptomatic relatives, and the relevance of a broad diagnostic approach involving muscle electron microscopy, skeletal muscle magnetic resonance imaging and next generation sequencing techniques.
Collapse
Affiliation(s)
- Daniele Velardo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
- *Correspondence: Daniele Velardo
| | - Maria Grazia D'Angelo
- NeuroMuscular Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) E. Medea, Bosisio Parini, Italy
| | - Andrea Citterio
- Laboratory of Molecular Biology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) E. Medea, Bosisio Parini, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) E. Medea, Bosisio Parini, Italy
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Claudia Cinnante
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
- Department of Radiology, Istituto Auxologico Italiano, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Milan, Italy
| | - Maurizio Moggio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
| | - Giacomo Pietro Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Neuroscience Section, University of Milan, Milan, Italy
| | - Dario Ronchi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Neuroscience Section, University of Milan, Milan, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) E. Medea, Bosisio Parini, Italy
| |
Collapse
|
4
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
5
|
Schänzer A, Schumann E, Zengeler D, Gulatz L, Maroli G, Ahting U, Sprengel A, Gräf S, Hahn A, Jux C, Acker T, Fürst DO, Rupp S, Schuld J, van der Ven PFM. The p.Ala2430Val mutation in filamin C causes a "hypertrophic myofibrillar cardiomyopathy". J Muscle Res Cell Motil 2021; 42:381-397. [PMID: 33710525 DOI: 10.1007/s10974-021-09601-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.
Collapse
Affiliation(s)
- Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany.
| | - Elisabeth Schumann
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Diana Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, Tübingen, Germany
| | - Lisann Gulatz
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technical University of Munich (TUM), Munich, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Sabine Gräf
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Stefan Rupp
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
7
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
8
|
Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020; 41:1091-1111. [PMID: 32112656 PMCID: PMC7318287 DOI: 10.1002/humu.24004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high‐throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC‐associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amber de Haan
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hanne M Boen
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Bart L Loeys
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Yvonne M Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
9
|
Iqbal NS, Jascur TA, Harrison SM, Edwards AB, Smith LT, Choi ES, Arevalo MK, Chen C, Zhang S, Kern AJ, Scheuerle AE, Sanchez EJ, Xing C, Baker LA. Prune belly syndrome in surviving males can be caused by Hemizygous missense mutations in the X-linked Filamin A gene. BMC MEDICAL GENETICS 2020; 21:38. [PMID: 32085749 PMCID: PMC7035669 DOI: 10.1186/s12881-020-0973-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Background Prune belly syndrome (PBS) is a rare, multi-system congenital myopathy primarily affecting males that is poorly described genetically. Phenotypically, its morbidity spans from mild to lethal, however, all isolated PBS cases manifest three cardinal pathological features: 1) wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, 2) urinary tract dilation with poorly contractile smooth muscle, and 3) intra-abdominal undescended testes. Despite evidence for a genetic basis, previously reported PBS autosomal candidate genes only account for one consanguineous family and single cases. Methods We performed whole exome sequencing (WES) of two maternal adult half-brothers with syndromic PBS (PBS + Otopalatodigital spectrum disorder [OPDSD]) and two unrelated sporadic individuals with isolated PBS and further functionally validated the identified mutations. Results We identified three unreported hemizygous missense point mutations in the X-chromosome gene Filamin A (FLNA) (c.4952 C > T (p.A1448V), c.6727C > T (p.C2160R), c.5966 G > A (p.G2236E)) in two related cases and two unrelated sporadic individuals. Two of the three PBS mutations map to the highly regulatory, stretch-sensing Ig19–21 region of FLNA and enhance binding to intracellular tails of the transmembrane receptor β-integrin 1 (ITGβ1). Conclusions FLNA is a regulatory actin-crosslinking protein that functions in smooth muscle cells as a mechanosensing molecular scaffold, transmitting force signals from the actin-myosin motor units and cytoskeleton via binding partners to the extracellular matrix. This is the first evidence for an X-linked cause of PBS in multiple unrelated individuals and expands the phenotypic spectrum associated with FLNA in males surviving even into adulthood.
Collapse
Affiliation(s)
- Nida S Iqbal
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| | - Thomas A Jascur
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Steven M Harrison
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angelena B Edwards
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Luke T Smith
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Erin S Choi
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Michelle K Arevalo
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Catherine Chen
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shaohua Zhang
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Adam J Kern
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Angela E Scheuerle
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,McDermott Center for Human Growth and Development, Department of Bioinformatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Emma J Sanchez
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Children's Health Dallas, 2350 N. Stemmons Freeway, Suite F4300, Dallas, TX, 75207, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, Department of Bioinformatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA. .,Children's Health Dallas, 2350 N. Stemmons Freeway, Suite F4300, Dallas, TX, 75207, USA.
| |
Collapse
|
10
|
Xiao F, Wei Q, Wu B, Liu X, Mading A, Yang L, Li Y, Liu F, Pan X, Wang H. Clinical exome sequencing revealed that FLNC variants contribute to the early diagnosis of cardiomyopathies in infant patients. Transl Pediatr 2020; 9:21-33. [PMID: 32154132 PMCID: PMC7036646 DOI: 10.21037/tp.2019.12.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND FLNC encodes actin-binding protein and is mainly concentrated in skeletal and cardiac muscle. Mutations in FLNC were found in cardiomyopathies. To date, studies on FLNC-cardiomyopathies have mainly been reported in adults. There are limited studies that have investigated FLNC variants in pediatric patients with cardiomyopathies. METHODS We summarized the patients who carried rare variants of FLNC from May 2016 to May 2019 in the Center for Molecular Medicine, Children's Hospital of Fudan University, from clinical exome sequencing data. RESULTS A total of 5 patients with FLNC rare variants were included. Of them, 3 were male and 2 were female. The median age was 3 months (range from 19 days to 30 months). A1186V was a known pathogenic variant reported in pediatric patients with cardiomyopathy (PMID: 29858533), and the other four variants were novel. In the four novel variants, there are one splicing (c.2265+4del) and three missense (p.R441I, p.C1639Y, and p.A2648S). Two patients (patients 1 and 3) were diagnosed with restrictive cardiomyopathy, two patients (patients 2 and 5) were diagnosed with dilated cardiomyopathy, and one patient (patient 4) was diagnosed with arrhythmia. CONCLUSIONS All five patients have survived to date. In summary, FLNC rare variants identified by clinical exome sequencing provide genetic evidence to make early diagnosis of cardiomyopathy in infant patients.
Collapse
Affiliation(s)
- Feifan Xiao
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.,Center for Molecular Medicine, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Qiufen Wei
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Liu
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Aiyao Mading
- Depatment of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lin Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yan Li
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Fang Liu
- Cardiovascular center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xinnian Pan
- The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|