1
|
Hayat S, Asad A, Munni MA, Nayeem MAJ, Mostafa MG, Jahan I, Howlader MZH, Mohammad QD, Islam Z. Interleukin-10 promoter polymorphisms and haplotypes in patients with Guillain-Barré syndrome. Ann Clin Transl Neurol 2024; 11:133-142. [PMID: 37955408 PMCID: PMC10791015 DOI: 10.1002/acn3.51939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
OBJECTIVE Interleukin-10 (IL-10) is a multifunctional cytokine that exerts both pro- and anti-inflammatory effects on the immune system as well as in the pathogenesis of Guillain-Barré syndrome (GBS). We investigated whether the three common polymorphisms -1082 G/A(rs1800896), -819 C/T(rs1800871), and -592 C/A(rs1800872) in the promoter region of IL-10 have any influence on the susceptibility, severity, and clinical outcome of GBS. METHODS IL-10 promoter polymorphisms were investigated in 152 patients with GBS and 152 healthy controls from Bangladesh using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP), and allele-specific oligonucleotide-PCR (ASO-PCR). Haplotype patterns and frequencies were analyzed using Heatmaply R-package, chi-square, and Fisher's exact test. The serum level of IL-10 was measured through enzyme-linked immunosorbent assays. p-values < 0.05 were considered statistically significant. RESULTS IL-10 promoter polymorphisms -1082 G/A, -819 C/T, and -592 C/A were not associated with GBS susceptibility. The homozygous -819 TT genotype showed a tendency with susceptibility (p = 0.029; pc = 0.08) and was prevalent in axonal variants of GBS compared to demyelinating subtypes and controls (p = 0.042, OR = 8.67, 95% CI = 1.03-72.97; pc = 0.123 and p = 0.005, OR = 4.2, 95% CI = 1.55-11.40; pc = 0.015, respectively). Haplotype analysis revealed 19 patterns of genotypes and high IL-10 expression haplotype combinations (GCC/GTA, GCC/ATA, and GCC/GCA) may have influence on disease severity (p = 0.026; pc = 0.078). Serum expression of IL-10 was elevated in GBS patients ([GBS, 12.16 ± 45.71] vs. [HC, 0.65 ± 5.17] pg/mL; p = 0.0027) and varied with disease severity ([severe-GBS, 15.25 ± 51.72] vs. [mild-GBS, 3.59 ± 19.79] pg/mL, p = 0.046). INTERPRETATION The -819 TT genotypes influence axonal GBS, and high frequency of IL-10 expression haplotype combination with elevated serum IL-10 may play an important role in disease severity.
Collapse
Affiliation(s)
- Shoma Hayat
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | - Asaduzzaman Asad
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | - Moriam Akter Munni
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | - Md. Abu Jaher Nayeem
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | - Md. Golam Mostafa
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | - Israt Jahan
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| | | | | | - Zhahirul Islam
- Laboratory of Gut‐Brain AxisInfectious Diseases Division (IDD), icddr,bDhakaBangladesh
| |
Collapse
|
2
|
Pabian-Jewuła S, Ambrożek-Latecka M, Brągiel-Pieczonka A, Nowicka K, Rylski M. Identification of Molecular Mechanisms Responsible for the MMP-9-1562C/T Dependent Differential Regulation of Matrix Metalloproteinase-9 Expression in Human Neuron-like Cells. Genes (Basel) 2023; 14:2028. [PMID: 38002971 PMCID: PMC10671763 DOI: 10.3390/genes14112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The MMP-9-1562C/T polymorphism exerts an impact on the occurrence and progression of numerous disorders affecting the central nervous system. Using luciferase assays and Q-RT-PCR technique, we have discovered a distinct allele-specific influence of the MMP-9-1562C/T polymorphism on the MMP-9 (Extracellular Matrix Metalloproteinase-9) promoter activity and the expression of MMP-9 mRNA in human neurons derived from SH-SY5Y cells. Subsequently, by employing a pull-down assay paired with mass spectrometry analysis, EMSA (Electromobility Shift Assay), and EMSA supershift techniques, as well as DsiRNA-dependent gene silencing, we have elucidated the mechanism responsible for the allele-specific impact of the MMP-9-1562C/T polymorphism on the transcriptional regulation of the MMP-9 gene. We have discovered that the activity of the MMP-9 promoter and the expression of MMP-9 mRNA in human neurons are regulated in a manner that is specific to the MMP-9-1562C/T allele, with a stronger upregulation being attributed to the C allele. Furthermore, we have demonstrated that the allele-specific action of the MMP-9-1562C/T polymorphism on the neuronal MMP-9 expression is related to HDAC1 (Histone deacetylase 1) and ZNF384 (Zinc Finger Protein 384) transcriptional regulators. We show that HDAC1 and ZNF384 bind to the C and the T alleles differently, forming different regulatory complexes in vitro. Moreover, our data demonstrate that HDAC1 and ZNF384 downregulate MMP-9 gene promoter activity and mRNA expression in human neurons acting mostly via the T allele.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland; (M.A.-L.); (A.B.-P.)
| | - Magdalena Ambrożek-Latecka
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland; (M.A.-L.); (A.B.-P.)
| | - Aneta Brągiel-Pieczonka
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland; (M.A.-L.); (A.B.-P.)
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, 02-957 Warsaw, Poland
| |
Collapse
|
3
|
Törnell A, Lagerström N, Mossberg N, Kiffin R, Farman H, Lycke J, Andersen O, Axelsson M, Hellstrand K, Martner A. CYBA allelic variants are associated with severity and recovery in Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:407-414. [PMID: 37288802 DOI: 10.1111/jns.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Guillain-Barré syndrome (GBS) is a rare, acute neuropathy characterized by ascending muscle weakness. Age, axonal GBS variants, and antecedent Campylobacter jejuni infection are associated with severe GBS, but the detailed mechanisms of nerve damage are only partly explored. Pro-inflammatory myeloid cells express NADPH oxidases (NOX) that generate tissue-toxic reactive oxygen species (ROS) that are implicated in neurodegenerative diseases. This study analyzed the impact of variants of the gene encoding the functional NOX subunit CYBA (p22phox ) on acute severity, axonal damage, and recovery in adult GBS patients. METHODS Extracted DNA from 121 patients was genotyped for allelic variation at rs1049254 and rs4673 within CYBA using real-time quantitative polymerase chain reaction. Serum neurofilament light chain was quantified by single molecule array. Patients were followed for severity and motor function recovery for up to 13 years. RESULTS CYBA genotypes linked to reduced formation of ROS, i.e. rs1049254/G and rs4673/A, were significantly associated with unassisted ventilation, shorter time to normalization of serum neurofilament light chain and shorter time to regained motor function. Residual disability at follow-up was confined to patients carrying CYBA alleles associated with high formation of ROS. INTERPRETATION These findings implicate NOX-derived ROS in GBS pathophysiology and CYBA alleles as biomarkers of severity.
Collapse
Affiliation(s)
- Andreas Törnell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Lagerström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalia Mossberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Capio Neuro Center, Carlanderska Hospital, Gothenburg, Sweden
| | - Roberta Kiffin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helen Farman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Pabian-Jewuła S, Rylski M. Does the functional polymorphism-1562C/T of MMP-9 gene influence brain disorders? Front Cell Neurosci 2023; 17:1110967. [PMID: 37206663 PMCID: PMC10188926 DOI: 10.3389/fncel.2023.1110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 05/21/2023] Open
Abstract
Metalloproteinase-9 (MMP-9) is one of the most strongly expressed matrix metalloproteinases (MMPs) in the brain. The MMP-9 activity in the brain is strictly regulated, and any disruptions in this regulation contribute to a development of many disorders of the nervous system including multiple sclerosis, brain strokes, neurodegenerative disorders, brain tumors, schizophrenia, or Guillain-Barré syndrome. This article discusses a relationship between development of the nervous system diseases and the functional single nucleotide polymorphism (SNP) at position -1562C/T within the MMP-9 gene. A pathogenic influence of MMP-9-1562C/T SNP was observed both in neurological and psychiatric disorders. The presence of the allele T often increases the activity of the MMP-9 gene promoter and consequently the expression of MMP-9 when compared to the allele C. This leads to a change in the likelihood of an occurrence of diseases and modifies the course of certain brain diseases in humans, as discussed below. The presented data indicates that the MMP-9-1562C/T functional polymorphism influences the course of many neuropsychiatric disorders in humans suggesting a significant pathological role of the MMP-9 metalloproteinase in pathologies of the human central nervous system.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
- *Correspondence: Sylwia Pabian-Jewuła,
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
5
|
Hayat S, Asad A, Hasan I, Jahan I, Papri N, Howlader ZH, Islam Z. Nucleotide oligomerization domain polymorphism confers no risk to Guillain-Barré syndrome. Acta Neurol Scand 2022; 146:177-185. [PMID: 35652365 DOI: 10.1111/ane.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Nucleotide oligomerization domain (NOD) proteins are cytoplasmic receptors that play important roles in host innate immune responses to pathogens by recognizing self or non-self-molecules and have been implicated in many autoimmune diseases including Guillain-Barré syndrome (GBS). The current study investigated whether NOD polymorphisms (NOD1-Glu266Lys, rs2075820, and NOD2- [Arg702Trp, rs2066844 and Gly908Arg, rs2066845]) contribute to ligand sensing and thus affect the susceptibility and/or severity of GBS. MATERIALS AND METHODS We determined single nucleotide polymorphisms (SNPs) of NOD gene (NOD1-Glu266Lys and NOD2-[Arg702Trp; Gly908Ar]) in 303 patients with GBS and 303 healthy controls from Bangladesh by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing. Genotypes and allele frequencies were compared by performing chi-squared or Fisher's exact test with Yates' continuity correction. Serology for Campylobacter jejuni and anti-GM1 antibodies were determined by enzyme-linked immunosorbent assay (ELISA) techniques. RESULTS NOD variants (NOD1-Glu266Lys and NOD2- [Arg702Trp; Gly908Arg]) were not associated with susceptibility and severity of GBS when compared with healthy controls and mild or severe form of disease. Moreover, NOD2 polymorphisms showed wild-type NOD2 C2104 and NOD2 G2722, respectively, with homozygous Arg/Arg genotype of NOD2 (Arg702Trp) polymorphism and homozygous Gly/Gly genotype of NOD2 (Gly908Arg) for all study subjects in Bangladesh. Homogenous distribution of NOD1 genotypes was observed in patients with axonal and demyelinating form of GBS. CONCLUSIONS NOD variants confer no risk to the susceptibility and severity of GBS. Moreover, NOD2 polymorphism is rare or absent in patients with GBS as well as in the healthy individuals of Bangladesh.
Collapse
Affiliation(s)
- Shoma Hayat
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Asaduzzaman Asad
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Imran Hasan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Israt Jahan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Nowshin Papri
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | | | - Zhahirul Islam
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| |
Collapse
|
6
|
Tu Y, Gong X, Zhang Y, Peng J, Zhuo W, Yu X. The Correlation Among the Immunoglobulin G Synthesis Rate, IgG Index and Albumin Quotient in Guillain-Barré Syndrome and Chronic Inflammatory Demyelinating Polyradiculoneuropathy: A Retrospective Case–Control Study. Front Neurol 2021; 12:746186. [PMID: 34975712 PMCID: PMC8718703 DOI: 10.3389/fneur.2021.746186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The immunoglobulin G synthesis rate (IgG SR) and immunoglobulin G (IgG) index are indicators of abnormal intrathecal humoural immune responses, and the albumin quotient (QALB) is an indicator used to evaluate the completeness of the blood-cerebrospinal fluid barrier (BCB). No systematic reports regarding differences in Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are available. We assessed differences in the IgG SR, IgG index and QALB between GBS and CIDP patients in a Chinese cohort. Methods: A total of 234 patients were retrospectively enrolled in this study, and 167 clinically confirmed GBS and CIDP patients were selected. Meanwhile, 67 non-GBS and non-CIDP patients requiring cerebrospinal fluid (CSF) examination were enrolled as the control group. The IgG SR, IgG index and QALB were calculated using formulas. The relevant clinical data were subjected to statistical analysis. Results: Among the GBS and CIDP study groups and the control group, the QALB had the highest positive rate (80.00%) in the CIDP group (P < 0.01). The QALB stratification analysis showed that the ranges of 10 < QALB ≤ 30 were dominant in the GBS and CIDP groups, and the positive rate of CIDP was higher than that of GBS. Furthermore, a QALB ≤ 7 was dominant in the control group, and a QALB > 30 was dominant in the CIDP group. In receiver operating characteristic (ROC) curve analysis with the CIDP group as the trial group and the GBS group as the control group, the differences in the QALB were statistically significant (P < 0.01). To achieve a high specificity of 98~99%, the diagnostic cut-off value for the QALB was above 57.37 (sensitivity: 9.33%) or below 0.60 (sensitivity: 4.35%). Multivariate logistic regression analysis showed that the CIDP patients had a QALB higher than 57.37, and compared with that in the GBS patients, the difference in the QALB was statistically significant (P < 0.01). Conclusion: QALB elevation was associated with CIDP, while QALB values above 57.37 or below 0.60 had high specificity in differentiating between GBS and CIDP. In CIDP, the BCB is generally moderately to severely damaged; in GBS, the BCB is generally moderately damaged.
Collapse
Affiliation(s)
- Yu Tu
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Xuan Gong
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Yuanyuan Zhang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Jiewei Peng
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Wenyan Zhuo
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Xueying Yu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueying Yu
| |
Collapse
|
7
|
Glucocorticoid receptor gene polymorphisms in Guillain-Barré syndrome. J Neuroimmunol 2020; 348:577388. [DOI: 10.1016/j.jneuroim.2020.577388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
|
8
|
A review of the role of genetic factors in Guillain–Barré syndrome. J Mol Neurosci 2020; 71:902-920. [DOI: 10.1007/s12031-020-01720-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
|