1
|
Jiao K, Cheng N, Huan X, Zhang J, Ding Y, Luan X, Liu L, Wang X, Zhu B, Du K, Fan J, Gao M, Xia X, Wang N, Wang T, Xi J, Luo S, Lu J, Zhao C, Yue D, Zhu W. Pseudoexon activation by deep intronic variation in GNE myopathy with thrombocytopenia. Muscle Nerve 2024; 69:708-718. [PMID: 38558464 DOI: 10.1002/mus.28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION/AIMS GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinghua Luan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingChun Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Xilu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiale Fan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| |
Collapse
|
2
|
Montcrieff C, Ferreira KA, Cheves TA, Massingham LJ, Sweeney JD. Hereditary thrombocytopenia with platelet sialic acid deficiency and mutations in the GNE genes. Transfusion 2023; 63:1092-1099. [PMID: 36941763 DOI: 10.1111/trf.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/28/2022] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND The inherited macrothrombocytopenias are rare disorders and the underlying cause can be identified in many cases but in some, this can remain enigmatic. Platelet transfusions are often administered during hemorrhagic events. METHODS A patient with previously unexplained inherited macrothrombocytopenia with a platelet count between 3-20 × 109 /L is described in which studies were performed using exome sequencing (ES) and platelet flow cytometry. RESULTS Both the hemoglobin and white cell counts were normal. ES revealed two suspicious variants, one likely pathogenic and one a variant of uncertain significance, in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, and flow cytometry showed diminished expression of surface platelet sialic acid (about 5%) but normal red cell sialic acid. The Thrombopoietin (TPO) level was low, and the patient responded to TPO-mimetic treatment with an increase in the platelet count. CONCLUSION Two variants in the GNE gene were able to be upgraded to pathogenic with apparently restricted expression to the megakaryocyte lineage. Platelet transfusion may be avoided in these patients with TPO-mimetic treatment.
Collapse
Affiliation(s)
- Caitlin Montcrieff
- Hemostasis and Thrombosis Center, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Karen A Ferreira
- Division of Flow Cytometry, Rhide Ilsand Hospital, Providence, Rhode Island, USA
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Tracey A Cheves
- Division of Coagulation and Transfusion Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Lauren J Massingham
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Division of Medical Genetics, Department of Pediatrics, Hasbro Children's Hospital, Providence, Rhode Island, USA
| | - Joseph D Sweeney
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Division of Coagulation and Transfusion Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Zygmunt DA, Lam P, Ashbrook A, Koczwara K, Lek A, Lek M, Martin PT. Development of Assays to Measure GNE Gene Potency and Gene Replacement in Skeletal Muscle. J Neuromuscul Dis 2023; 10:797-812. [PMID: 37458043 PMCID: PMC10578240 DOI: 10.3233/jnd-221596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND GNE myopathy (GNEM) is a severe muscle disease caused by mutations in the UDP-GlcNAc-2-epimerase/ManNAc-6-kinase (GNE) gene, which encodes a bifunctional enzyme required for sialic acid (Sia) biosynthesis. OBJECTIVE To develop assays to demonstrate the potency of AAV gene therapy vectors in making Sia and to define the dose required for replacement of endogenous mouse Gne gene expression with human GNE in skeletal muscles. METHODS A MyoD-inducible Gne-deficient cell line, Lec3MyoDI, and a GNE-deficient human muscle cell line, were made and tested to define the potency of various AAV vectors to increase binding of Sia-specific lectins, including MAA and SNA. qPCR and qRT-PCR methods were used to quantify AAV biodistribution and GNE gene expression after intravenous delivery of AAV vectors designed with different promoters in wild-type mice. RESULTS Lec3 cells showed a strong deficit in MAA binding, while GNE-/-MB135 cells did not. Overexpressing GNE in Lec3 and Lec3MyoDI cells by AAV infection stimulated MAA binding in a dose-dependent manner. Use of a constitutive promoter, CMV, showed higher induction of MAA binding than use of muscle-specific promoters (MCK, MHCK7). rAAVrh74.CMV.GNE stimulated human GNE expression in muscles at levels equivalent to endogenous mouse Gne at a dose of 1×1013vg/kg, while AAVs with muscle-specific promoters required higher doses. AAV biodistribution in skeletal muscles trended higher when CMV was used as the promoter, and this correlated with increased sialylation of its viral capsid. CONCLUSIONS Lec3 and Lec3MyoDI cells work well to assay the potency of AAV vectors in making Sia. Systemic delivery of rAAVrh74.CMV.GNE can deliver GNE gene replacement to skeletal muscles at doses that do not overwhelm non-muscle tissues, suggesting that AAV vectors that drive constitutive organ expression could be used to treat GNEM.
Collapse
Affiliation(s)
- Deborah A. Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Patricia Lam
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Katherine Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Paul T. Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
5
|
Xu Z, Xiang J, Luan X, Geng Z, Cao L. Novel compound heterozygous mutations in a GNE myopathy with congenital thrombocytopenia: A case report and literature review. Clin Case Rep 2022; 10:e05659. [PMID: 35414913 PMCID: PMC8978988 DOI: 10.1002/ccr3.5659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
We reported a GNE myopathy with congenital thrombocytopenia on a young male patient. He presented with a 3-year history of lower distal extremity weakness initially affecting his legs. The weakness slowly progressed to lower proximal legs and upper arms last 6 months. Whole-exome sequencing revealed that the patient harbored two heterozygous gene mutations, including a novel insertion mutation c.*1037_*1038CACACACACACACACACACACA and c.C478T in exome 12 and 3 of the GNE gene (NM_001128227), respectively. The levels of serum sialic acid in this patient were considerably decreased. Muscle MRI imaging showed the anterior and medial parts of his quadriceps were heavily affected by this disease. Hematoxylin and eosin staining showed prominent rimmed vacuoles with a lack of inflammatory response in the atrophied muscle. We also undertook a review of the current literature, searching for reports in which the GNE gene mutation caused the thrombocytopenia with or without muscle weakness. This new gene mutation finding broadens the GNE disease genotype spectrum, and further investigation of the relationship between GNE gene mutations and the heterogeneity of its clinical manifestations is needed.
Collapse
Affiliation(s)
- Zhouwei Xu
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jingyan Xiang
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinghua Luan
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhi Geng
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Li Cao
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
6
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Beecher G, Liewluck T. GNE myopathy: Don't sleep on the platelets. Muscle Nerve 2021; 65:263-265. [PMID: 34931325 DOI: 10.1002/mus.27477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, US
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, US
| |
Collapse
|
8
|
Yoshioka W, Shimizu R, Takahashi Y, Oda Y, Yoshida S, Ishihara N, Nishino I, Nakamura H, Mori-Yoshimura M. Extra-muscular manifestations in GNE myopathy patients: A nationwide repository questionnaire survey in Japan. Clin Neurol Neurosurg 2021; 212:107057. [PMID: 34871992 DOI: 10.1016/j.clineuro.2021.107057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE GNE myopathy is a rare autosomal recessive adult-onset distal myopathy caused by biallelic pathogenic variants in GNE. Although some extra-muscular manifestations associated with GNE myopathy have been reported, little is known about whether they are disease-specific and how often they present. This study aimed to characterize extra-muscular manifestations of GNE myopathy. METHODS We conducted a questionnaire survey of GNE myopathy patients registered in a national registry in Japan. The questionnaire requested information regarding idiopathic thrombocytopenia, cardiac involvement, respiratory involvement, sleep apnea syndrome (SAS), and psychiatric diseases. RESULTS The response rate was 62.4% (126/198), yielding a total of 51 male and 75 female participants. Of the participants, 4.1% (5/123) had a diagnosis of idiopathic thrombocytopenia, and 16.3% (8/49) of males and 6.6% of females (5/76) had a diagnosis of SAS. In total, 0.8% (1/126) of participants had pervasive developmental disabilities and 14.7% (16/109) had a psychiatric disease. CONCLUSION The frequencies of idiopathic thrombocytopenia and SAS among Japanese GNE myopathy patients were higher than those observed in the general Japanese population. Routine blood tests and evaluation of sleep-disordered breathing should be considered in order to better manage GNE myopathy patients.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan; Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Reiko Shimizu
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yuriko Oda
- Patient Association for Distal Myopathies, Tokyo, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, NCNP, Tokyo, Japan
| | - Nahoko Ishihara
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Harumasa Nakamura
- Department of Clinical Research Promotion, Translational Medical Center, NCNP, Tokyo, Japan
| | | |
Collapse
|
9
|
Smolag KI, Fager Ferrari M, Zetterberg E, Leinoe E, Ek T, Blom AM, Rossing M, Martin M. Severe Congenital Thrombocytopenia Characterized by Decreased Platelet Sialylation and Moderate Complement Activation Caused by Novel Compound Heterozygous Variants in GNE. Front Immunol 2021; 12:777402. [PMID: 34858435 PMCID: PMC8630651 DOI: 10.3389/fimmu.2021.777402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Hereditary thrombocytopenias constitute a genetically heterogeneous cause of increased bleeding. We report a case of a 17-year-old boy suffering from severe macrothrombocytopenia throughout his life. Whole genome sequencing revealed the presence of two compound heterozygous variants in GNE encoding the enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, crucial for sialic acid biosynthesis. Sialic acid is required for normal platelet life span, and biallelic variants in GNE have previously been associated with isolated macrothrombocytopenia. Furthermore, sialic acid constitutes a key ligand for complement factor H (FH), an important inhibitor of the complement system, protecting host cells from indiscriminate attack. Methods Sialic acid expression and FH binding to platelets and leukocytes was evaluated by flow cytometry. The binding of FH to erythrocytes was assessed indirectly by measuring the rate of complement mediated hemolysis. Complement activation was determined by measuring levels of C3bBbP (alternative pathway), C4d (classical/lectin pathway) and soluble terminal complement complex assays. Results The proband exhibited markedly decreased expression of sialic acid on platelets and leukocytes. Consequently, the binding of FH was strongly reduced and moderate activation of the alternative and classical/lectin complement pathways was observed, together with an increased rate of erythrocyte lysis. Conclusion We report two previously undescribed variants in GNE causing severe congenital macrothrombocytopenia in a compound heterozygous state, as a consequence of decreased platelet sialylation. The decreased sialylation of platelets, leukocytes and erythrocytes affects the binding of FH, leading to moderate complement activation and increased hemolysis.
Collapse
Affiliation(s)
- Karolina I Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcus Fager Ferrari
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Zetterberg
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Ek
- Children's Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|