1
|
Zhang Q, Zhang Y, Shi Q, Zhao L, Yue Y, Yan C. Application study of DTI combined with ASL in the crossed cerebellar diaschisis after subacute cerebral hemorrhage. Neurol Sci 2023; 44:3949-3956. [PMID: 37335404 DOI: 10.1007/s10072-023-06908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE To study the value of 3.0T magnetic resonance imaging with diffusion tensor imaging (DTI) and 3D-arterial spin labeling (ASL) perfusion imaging in the diagnosis of the crossed cerebellar diaschisis (CCD) after the unilateral supratentorial subacute cerebral hemorrhage. METHODS Fifty-eight patients with the unilateral supratentorial subacute cerebral hemorrhage who underwent diffusion tensor imaging (DTI), 3D-arterial spin labeling (ASL), and conventional magnetic resonance imaging (MRI) scanning were enrolled. Cerebral blood flow (CBF) values of the perihematomal edema (PHE) and bilateral cerebellar hemisphere were measured on ASL mapping, and the fractional anisotropy (FA) and mean diffusivity (MD) values of the bilateral cortical, pontine, and middle cerebellar peduncle (MCP) were measured on DTI mapping. RESULTS In the CCD(+) group, FA values of the cerebral cortex and pontine ipsilateral to the lesion were statistically reduced compared to the contralateral side (P < 0.05), and the FA and MD values of the middle cerebellar peduncle (MCP) contralateral to the lesion were statistically reduced compared to the ipsilateral side (P < 0.05). Positive correlation was detected between the CBF values of the perihematomal edema (PHE) and the CBF values of cerebellar hemispheres (r = 0.642, P < 0.05), whereas the CBF values of PHE had a significantly high positive correlation with the FA in the contralateral MCP (r = 0.854, P < 0.05). CBF values in the contralateral cerebellar hemisphere correlated with FA (r = 0.466, P < 0.05) and MD values (r = 0.718, P < 0.05) in the contralateral MCP. CONCLUSION Hemodynamic alterations of PHE and cortical-ponts-cerebellum (CPC) fibrous pathway damage are associated with the development of CCD; DTI technique can assess the degree of CPC fiber pathway injury at an early stage.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yundu Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Qiang Shi
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Lei Zhao
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yun Yue
- Department of Hyperbaric Oxygen, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China.
| | - Chengxin Yan
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
3
|
Manganotti P, Furlanis G, Cova MA, Olivo S, Dore F, Sartori A, Naccarato M. Isolated aphasic status epilepticus: CT perfusion, SPECT and EEG reveal neurovascular coupling and support the differential diagnosis. Epileptic Disord 2022; 24:549-554. [PMID: 35653085 DOI: 10.1684/epd.2022.1421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2023]
Abstract
Objective Among the clinical manifestations of stroke mimics, isolated aphasia is one of the most challenging due to its aetiopathogenic diagnosis. This short communication describes a specific perfusion and brain oscillatory pattern in a challenging case of prolonged isolated aphasia caused by status epilepticus, jointly investigated by computed tomography (CT) perfusion, single-photon emission computerized tomography (SPECT)/CT and EEG qualitative and quantitative analysis. Methods We discuss the different patterns of perfusion neuroimaging and EEG between SE and ischaemic stroke or postictal (Todd's)-related isolated aphasia, and propose these differences as a basis to support the differential diagnosis. Results The pattern associated with SE was characterized by focal hyperperfusion on CT perfusion maps (the left mean transit time was shorter with >10% asymmetry, and left cerebral blood volume and cerebral blood flow increased or slightly altered, relative to the contralateral side) and SPECT (focal left temporal hyperperfusion), without any early ischaemic signs on non-enhanced CT, while the EEG showed a predominant left hemispheric slow delta power. The aforementioned perfusion pattern contrasts with postictal epileptic Todd's phenomenon, which is characterized by hypoperfusion on CT perfusion (the mean transit time is prolonged and cerebral blood volume and cerebral blood flow are reduced, compared to the contralateral hemisphere) and SPECT (focal hypoperfusion), not restricted to the specific vascular territories. Significance CT perfusion patterns may add valuable information to support the differential diagnosis of status epilepticus, rather than acute ischaemic stroke or postictal Todd's phenomenon, in cases with challenging symptoms of prolonged isolated aphasia.
Collapse
|
4
|
Yang Y, Yang J, Feng J, Wang Y. Early Diagnosis of Acute Ischemic Stroke by Brain Computed Tomography Perfusion Imaging Combined with Head and Neck Computed Tomography Angiography on Deep Learning Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5373585. [PMID: 35615731 PMCID: PMC9110193 DOI: 10.1155/2022/5373585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/30/2022]
Abstract
The purpose of the research was to discuss the application values of deep learning algorithm-based computed tomography perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in the diagnosis of ultra-early acute ischemic stroke. Firstly, 88 patients with acute ischemic stroke were selected as the research objects and performed with cerebral CTP and CTA examinations. In order to improve the effect of image diagnosis, a new deconvolution network model AD-CNNnet based on deep learning was proposed and used in patient CTP image evaluation. The results showed that the peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) of the AD-CNNnet method were significantly higher than those of traditional methods, while the normalized mean square error (NMSE) was significantly lower than that of traditional algorithms (P < 0.05). 80 cases were positive by CTP-CTA, including 16 cases of hyperacute ischemic stroke and 64 cases of acute ischemic stroke. The diagnostic sensitivity was 93.66%, and the specificity was 96.18%. The cerebral blood flow (CBF), cerebral blood volume (CBV), and the mean transit time (MTT) in the infarcted area were significantly greater than those in the corresponding healthy side area, and the time to peak (TTP) was significantly less than that in the corresponding healthy side area (P < 0.05). The cerebral perfusion parameters CBF, TTP, and MTT in the penumbra were significantly different from those in the infarct central area and the corresponding contralateral area, and TTP was the most sensitive (P < 0.05). To sum up, deep learning algorithm-based CTP combined with CTA could find the location of cerebral infarction lesions as early as possible to provide a reliable diagnostic result for the diagnosis of ultra-early acute ischemic stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Medical Imaging Centre, The First People's Hospital of Xianyang, Xianyang 712000, Shannxi, China
| | - Jinjun Yang
- Department of Ultrasound Medicine, The First People's Hospital of Xianyang, Xianyang 712000, Shannxi, China
| | - Jiao Feng
- Department of Medical Imaging Centre, The First People's Hospital of Xianyang, Xianyang 712000, Shannxi, China
| | - Yi Wang
- Department of Medical Imaging Centre, The First People's Hospital of Xianyang, Xianyang 712000, Shannxi, China
| |
Collapse
|
5
|
Keser Z, Faria AV, Hillis AE. Progressive Crossed Cerebellar Wallerian Degeneration After Hemispheric Infarct. Stroke 2022; 53:e143-e144. [PMID: 35306835 PMCID: PMC9938387 DOI: 10.1161/strokeaha.122.038915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Neurology, Mayo Clinic, Rochester, MN
| | - Andreia V. Faria
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Crossed cerebellar diaschisis after acute ischemic stroke detected by intravoxel incoherent motion magnetic resonance imaging. Neurol Sci 2021; 43:1135-1141. [PMID: 34213697 DOI: 10.1007/s10072-021-05425-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To study the value of 3.0 T magnetic resonance imaging with intravoxel incoherent motion (IVIM) in the diagnosis of the crossed cerebellar diaschisis (CCD) after the unilateral supratentorial acute ischemic stroke. METHODS Seventy-four patients with acute ischemic stroke who underwent intravoxel incoherent motion (IVIM), arterial spin labeling (ASL), and conventional magnetic resonance imaging (MRI) scanning were enrolled. Intravoxel incoherent motion-derived perfusion-related parameters including fast diffusion coefficient (D*), slow diffusion coefficient (D), vascular volume fraction (f), and arterial spin-labeling-derived cerebral blood flow (CBF) of bilateral cerebellum were measured. RESULTS In the CCD-positive group, D*, D, and CBF values of the contralateral cerebellum decreased compared with those of the ipsilesional cerebellum (P < 0.05), whereas f significantly increased (P < 0.05). A positive correlation was detected between the slow diffusion coefficient-based asymmetry index (AI-D) and the cerebral blood flow-based asymmetry index (AI-CBF) (r = 0.515, P < 0.01), whereas the vascular volume fraction-based asymmetry index (AI-f) had a negative correlation with the cerebral blood flow-based asymmetry index (AI-CBF) (r = - 0.485, P < 0.01). Furthermore, the area under the receiver operating characteristic (ROC) curve value of AI-D and AI-f was 0.81 and 0.76, respectively. CONCLUSIONS The IVIM is feasible for the detection of CCD. This technique might provide opportunities to further investigate the pathophysiology of CCD.
Collapse
|
7
|
Furlanis G, Ajčević M, Scali I, Buoite Stella A, Olivo S, Lugnan C, Caruso P, Pozzi Mucelli RA, Accardo A, Cova MA, Naccarato M, Manganotti P. CT perfusion in hyper-acute ischemic stroke: the acid test for COVID-19 fear. Neuroradiology 2021; 63:1419-1427. [PMID: 33532920 PMCID: PMC7853703 DOI: 10.1007/s00234-021-02639-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The fear of COVID-19 infection may discourage patients from going to the hospital even in case of sudden onset of disabling symptoms. There is growing evidence of the reduction of stroke admissions and higher prevalence of severe clinical presentation. Yet, no studies have investigated the perfusion pattern of acute strokes admitted during the lockdown. We aimed to evaluate the effects of the COVID-19 pandemic on hyper-acute stroke CT perfusion (CTP) pattern during the first months of the pandemic in Italy. METHODS In this retrospective observational study, we analyzed CTP images and clinical data of ischemic stroke patients admitted between 9 March and 2 June 2020 that underwent CTP (n = 30), to compare ischemic volumes and clinical features with stroke patients admitted during the same period in 2019 (n = 51). In particular, CTP images were processed to calculate total hypoperfused volumes, core volumes, and mismatch. The final infarct volumes were calculated on follow-up CT. RESULTS Significantly higher total CTP hypoperfused volume (83.3 vs 18.5 ml, p = 0.003), core volume (27.8 vs 1.0 ml, p < 0.001), and unfavorable mismatch (0.51 vs 0.91, p < 0.001) were found during the COVID-19 period compared to no-COVID-19 one. The more unfavorable perfusion pattern at admission resulted in higher infarct volume on follow-up CT during COVID-19 (35.5 vs 3.0 ml, p < 0.001). During lockdown, a reduction of stroke admissions (- 37%) and a higher prevalence of severe clinical presentation (NIHSS ≥ 10; 53% vs 36%, p = 0.029) were observed. CONCLUSION The results of CTP analysis provided a better insight in the higher prevalence of major severity stroke patients during the COVID-19 period.
Collapse
Affiliation(s)
- Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 10, 34127, Trieste, Italy.
| | - Ilario Scali
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Sasha Olivo
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Carlo Lugnan
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Roberta Antea Pozzi Mucelli
- Radiology Unit, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 10, 34127, Trieste, Italy
| | - Maria Assunta Cova
- Radiology Unit, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Marcello Naccarato
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| |
Collapse
|