1
|
Filippatou A, Theodorou A, Stefanou MI, Tzanetakos D, Kitsos D, Moschovos C, Koutsouraki E, Tzartos JS, Giannopoulos S, Voumvourakis K, Tsivgoulis G. Optical coherence tomography and angiography in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2025; 470:123422. [PMID: 39954575 DOI: 10.1016/j.jns.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND OBJECTIVES Anterior visual pathway involvement is common in multiple sclerosis (MS) and optical coherence tomography (OCT) can be utilized to examine the integrity of the ganglion cell axons (peri-papillary retinal nerve fiber layer; pRNFL) and cell bodies (ganglion cell & inner plexiform layer; GCIPL). OCT angiography (OCTA) can be used to investigate the retinal microvasculature. In this systematic review and meta-analysis, we synthesized OCT and OCTA findings in MS. METHODS We identified studies that performed OCT and OCTA in people with MS and included data permitting at least one of the following comparisons: 1) MS optic neuritis (MS-ON) vs healthy-control (HC) eyes; 2) MS non-ON (MS-NON) vs HC eyes; and 3) MS-ON vs MS-NON eyes. RESULTS The OCT meta-analysis included 170 studies and 8542 HC, 5529 MS-ON, and 14,822 MS-NON eyes. MS-ON and MS-NON eyes had lower pRNFL and GCIPL thickness compared to HC. There was no difference in inner nuclear layer (INL) thickness between HC and MS; INL was thicker in MS-ON compared to MS-NON eyes. The OCTA meta-analysis included 24 studies and 1344 HC, 505 MS-ON, and 1168 MS-NON eyes. MS-ON and MS-NON eyes had lower peripapillary vessel density and macular superficial vessel density compared to HC. We also summarized 12 studies evaluating the diagnostic yield of inter-eye differences in OCT measurements for detecting unilateral optic nerve involvement. CONCLUSIONS OCT allows for reliable quantification of retinal neuro-axonal damage in MS. In our review, we highlight studies demonstrating that OCT can establish robust thresholds for detecting unilateral optic nerve involvement.
Collapse
Affiliation(s)
- Angeliki Filippatou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dimitrios Tzanetakos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kitsos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Moschovos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Effrosyni Koutsouraki
- First Department of Neurology, "AHEPA" University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John S Tzartos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Mirmosayyeb O, Yazdan Panah M, Moases Ghaffary E, Vaheb S, Mahmoudi F, Shaygannejad V, Lincoff N, Jakimovski D, Zivadinov R, Weinstock-Guttman B. The relationship between optical coherence tomography and magnetic resonance imaging measurements in people with multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2025; 470:123401. [PMID: 39874745 DOI: 10.1016/j.jns.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Several studies show that optical coherence tomography (OCT) metrics e with cognition, disability, and brain structure in people with multiple sclerosis (PwMS). This review the correlation between OCT parameters and magnetic resonance imaging (MRI) measurements in PwMS. METHODS A comprehensive search of PubMed/MEDLINE, Embase, Scopus, and Web of Science was performed, including studies published in English up to November 29, 2024 to identify studies reporting quantitative data on the correlation between baseline OCT parameters and MRI measurements in PwMS. The meta-analysis was performed using R software version 4.4.0. RESULTS From 4931 studies, 68 studies on 6168 PwMS (67.4 % female) were included. The most significant correlations were found between peripapillary retinal nerve fiber layer (pRNFL) thickness and lower T1 lesion volume r = -0.42 (95 % CI: -0.52 to -0.31, p-value <0.001, I2 = 24 %), greater thalamic volume r = 0.39 (95 % CI: 0.17 to 0.61, p-value <0.001, I2 = 81 %), and lower T2 lesion volume r = -0.37 (95 % CI: -0.54 to -0.21, p-value <0.001, I2 = 85 %), respectively. Additionally, lower macular ganglion cell-inner plexiform layer (mGCIPL) thickness showed the most significant correlations with positive and lower thalamic volume r = 0.37 (95 % CI: 0.1 to 0.64, p-value = 0.008, I2 = 88 %), and positive and lower grey matter volume (GMV) 0.33 (95 % CI: 0.15 to 0.52, p-value <0.001, I2 = 81 %), respectively. CONCLUSION pRNFL and mGCIPL thickness are correlated with MRI measurements, suggesting that OCT can serve as a non-invasive, cost-effective, and complementary tool to MRI for enhancing the exploring of brain structural changes in PwMS.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Mahmoudi
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Norah Lincoff
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Wynn Hospital, Mohawk Valley Health System, Utica, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Tekgol Uzuner G, Ozer A, Uzuner N. Combination among VEP, OCT and TCD data in patients with relapsing-remitting multiple sclerosis during attack-free period. Int J Neurosci 2025; 135:257-263. [PMID: 38088352 DOI: 10.1080/00207454.2023.2295228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
AIMS Multiple sclerosis (MS) is characterized by inflammation, demyelination, glial cell pathology and axonal injury in the central nervous system, and also progressive axonal loss of the optic nerve in cases with optic neuritis (ON). The previous transcranial Doppler (TCD) investigations suggest cortical hyperreactivity in patients with relapsing-remitting Multiple sclerosis (RRMS). We investigated the effect of ON involvement on visual reactivity. MATERIAL AND METHODS One hundred thirty patients with RRMS during attack-free period and 12 healthy subjects were enrolled to the study. Visual evoked potential (VEP), optic coherence tomography (OCT) and TCD examinations of all subjects were performed. RESULTS Cerebrovascular reactivity measured with breath holding (BH) test was found to be normal. VEP amplitude, visual reactivity and peripapillary retinal nerve fibre layer (pRNFL) measurements were found to be low in patients with ON involvement, whereas VEP latencies were long. Visual reactivity was negatively correlated with VEP amplitude and RFNL measurements, and positively correlated with VEP latency. CONCLUSIONS The present study supports that cerebrovascular reactivity is preserved in patients with RRMS except for attacks, and neurovascular reactivity is increased in patients without ON involvement.
Collapse
Affiliation(s)
| | - Ahmet Ozer
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nevzat Uzuner
- Department of Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
4
|
Vujosevic S, Parra MM, Hartnett ME, O'Toole L, Nuzzi A, Limoli C, Villani E, Nucci P. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children. Eye (Lond) 2023; 37:203-219. [PMID: 35428871 PMCID: PMC9012155 DOI: 10.1038/s41433-022-02056-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 01/28/2023] Open
Abstract
The retina and the optic nerve are considered extensions of the central nervous system (CNS) and thus can serve as the window for evaluation of CNS disorders. Spectral domain optical coherence tomography (OCT) allows for detailed evaluation of the retina and the optic nerve. OCT can non-invasively document changes in single retina layer thickness and structure due to neuronal and retinal glial cells (RGC) modifications in systemic and local inflammatory and neurodegenerative diseases. These can include evaluation of retinal nerve fibre layer and ganglion cell complex, hyper-reflective retinal spots (HRS, sign of activated microglial cells in the retina), subfoveal neuroretinal detachment, disorganization of the inner retinal layers (DRIL), thickness and integrity of the outer retinal layers and choroidal thickness. This review paper will report the most recent data on the use of OCT as a non invasive imaging biomarker for evaluation of the most common systemic neuroinflammatory and neurodegenerative/neurocognitive disorders in the adults and in paediatric population. In the adult population the main focus will be on diabetes mellitus, multiple sclerosis, optic neuromyelitis, neuromyelitis optica spectrum disorders, longitudinal extensive transverse myelitis, Alzheimer and Parkinson diseases, Amyotrophic lateral sclerosis, Huntington's disease and schizophrenia. In the paediatric population, demyelinating diseases, lysosomal storage diseases, Nieman Pick type C disease, hypoxic ischaemic encephalopathy, human immunodeficiency virus, leukodystrophies spinocerebellar ataxia will be addressed.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - M Margarita Parra
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - M Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Louise O'Toole
- Department of Ophthalmology Mater Private Network, Dublin, Ireland
| | - Alessia Nuzzi
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Edoardo Villani
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Individual differences in visual evoked potential latency are associated with variance in brain tissue volume in people with multiple sclerosis: An analysis of brain function-structure correlates. Mult Scler Relat Disord 2022; 68:104116. [PMID: 36041331 DOI: 10.1016/j.msard.2022.104116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022]
Abstract
Visual evoked potentials (VEP) index visual pathway functioning, and are often used for clinical assessment and as outcome measures in people with multiple sclerosis (PwMS). VEPs may also reflect broader neural disturbances that extend beyond the visual system, but this possibility requires further investigation. In the present study, we examined the hypothesis that delayed latency of the P100 component of the VEP would be associated with broader structural changes in the brain in PwMS. We obtained VEP latency for a standard pattern-reversal checkerboard stimulus paradigm, in addition to Magnetic Resonance Imaging (MRI) measures of whole brain volume (WBV), gray matter volume (GMV), white matter volume (WMV), and T2-weighted fluid attenuated inversion recovery (FLAIR) white matter lesion volume (FLV). Correlation analyses indicated that prolonged VEP latency was significantly associated with lower WBV, GMV, and WMV, and greater FLV. VEP latency remained significantly associated with WBV, GMV, and WMV even after controlling for the variance associated with inter-ocular latency, age, time between VEP and MRI assessments, and other MRI variables. VEP latency delays were most pronounced in PwMS that exhibited low volume in both white and gray matter simultaneously. Furthermore, PwMS that had delayed VEP latency based on a clinically relevant cutoff (VEP latency ≥ 113 ms) in both eyes had lower WBV, GMV, and WMV and greater FLV in comparison to PwMS that had normal VEP latency in one or both eyes. The findings suggest that PwMS that have delayed latency in both eyes may be particularly at risk for exhibiting greater brain atrophy and lesion volume. These analyses also indicate that VEP latency may index combined gray matter and white matter disturbances, and therefore broader network connectivity and efficiency. VEP latency may therefore provide a surrogate marker of broader structural disturbances in the brain in MS.
Collapse
|
6
|
Olbert E, Struhal W. Retinal imaging with optical coherence tomography in multiple sclerosis: novel aspects. Wien Med Wochenschr 2022; 172:329-336. [PMID: 35347500 PMCID: PMC9606096 DOI: 10.1007/s10354-022-00925-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Optical coherence tomography (OCT) is of increasing interest in the clinical assessment of multiple sclerosis (MS) patients beyond the scope of clinical studies. In this narrative review, we discuss novel changes of OCT parameters during acute optic neuritis and the disease course of MS patients. OCT images document the changes of retinal layers during an episode of acute optic neuritis and can therefore provide valuable insights into the pathophysiology. Moreover, MS patients show progredient thinning of retinal layers throughout the disease. The thinning is accelerated through relapses as well as disease progression without relapse. The OCT parameters are also associated with clinical outcome parameters, including disability, cognitive function, and brain atrophy. The impact of disease-modifying therapies on OCT parameters is the subject of ongoing research and depends on the agent used. Additional data are still necessary before OCT parameters can be implemented in the clinical standard of care of MS patients.
Collapse
Affiliation(s)
- Elisabeth Olbert
- Department of Neurology, University Hospital Tulln, Alter Ziegelweg 10, 3430, Tulln an der Donau, Austria. .,Karl Landsteiner University of Health Sciences, Tulln, Austria.
| | - Walter Struhal
- Department of Neurology, University Hospital Tulln, Alter Ziegelweg 10, 3430, Tulln an der Donau, Austria.,Karl Landsteiner University of Health Sciences, Tulln, Austria
| |
Collapse
|