1
|
Wu L, Sun J, Wang L, Chen Z, Guan Z, Du L, Qu R, Liu C, Shao Y, Hua Y. Whole-transcriptome sequencing in neural and non-neural tissues of a mouse model identifies miR-34a as a key regulator in SMA pathogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102490. [PMID: 40125274 PMCID: PMC11930137 DOI: 10.1016/j.omtn.2025.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder caused by deficiency of survival of motor neuron (SMN). While significant progress has been made in SMA therapy by rescuing SMN expression, limited knowledge about SMN downstream genes has hindered the development of alternative therapies. Here, we conducted whole-transcriptome sequencing of spinal cord, heart, and liver tissues of a severe SMA mouse model at early postnatal ages to explore critical coding and non-coding RNAs (ncRNAs). A large number of differentially expressed RNAs (DE-RNAs) were obtained, including 2,771 mRNAs, 382 microRNAs (miRNAs), 1,633 long ncRNAs, and 1,519 circular RNAs. Through in-depth data mining, we unveiled deregulation of miR-34a in all tissues. Analysis of competitive endogenous RNA networks of DE-RNAs identified multiple novel targets of miR-34a including Spag5 mRNA, lncRNA00138536, and circRNA007386. Further in vitro studies using mouse myoblast and human cardiomyocyte cell lines showed that knockdown of SMN upregulated miR-34a-5p and overexpression of miR-34a-5p alone disrupted cell-cycle progression through regulating its targets, recapitulating gene expression patterns observed in cardiac tissue of SMA mice. Our results identified a critical miRNA involved in SMA pathology, which sheds insights into the molecular basis of widespread tissue abnormalities observed in severe forms of SMA.
Collapse
Affiliation(s)
- Liucheng Wu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Laboratory Animal Center, Nantong University, Nantong 226001, China
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhiheng Chen
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Zeyuan Guan
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Lili Du
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ruobing Qu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Chun Liu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Yixiang Shao
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Gandhi G, Kodiappan R, Abdullah S, Teoh HK, Tai L, Cheong SK, Yeo WWY. Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs. J Neuropathol Exp Neurol 2024; 83:822-832. [PMID: 38894621 DOI: 10.1093/jnen/nlae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Radha Kodiappan
- Department of Research and Training, MAHSA Specialist Hospital, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Hoon Koon Teoh
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Lihui Tai
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Cytopeutics Sdn. Bhd, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Bagga P, Singh S, Ram G, Kapil S, Singh A. Diving into progress: a review on current therapeutic advancements in spinal muscular atrophy. Front Neurol 2024; 15:1368658. [PMID: 38854961 PMCID: PMC11157111 DOI: 10.3389/fneur.2024.1368658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an uncommon disorder associated with genes characterized by the gradual weakening and deterioration of muscles, often leading to substantial disability and premature mortality. Over the past decade, remarkable strides have been made in the field of SMA therapeutics, revolutionizing the landscape of patient care. One pivotal advancement is the development of gene-targeted therapies, such as nusinersen, onasemnogene abeparvovec and risdiplam which have demonstrated unprecedented efficacy in slowing disease progression. These therapies aim to address the root cause of SMA by targeting the survival motor neuron (SMN) gene, effectively restoring deficient SMN protein levels. The advent of these innovative approaches has transformed the prognosis for many SMA patients, offering a glimmer of hope where there was once limited therapeutic recourse. Furthermore, the emergence of small molecule compounds and RNA-targeting strategies has expanded the therapeutic arsenal against SMA. These novel interventions exhibit diverse mechanisms of action, including SMN protein stabilization and modulation of RNA splicing, showcasing the multifaceted nature of SMA treatment research. Collective efforts of pharmaceutical industries, research centers, and patient advocacy groups have played an important role in expediting the translation of scientific discoveries into visible clinical benefits. This review not only highlights the remarkable progress achieved in SMA therapeutics but also generates the ray of hope for the ongoing efforts required to enhance accessibility, optimize treatment strategies, rehabilitation (care and therapies) and ultimately pave the way for an improved quality of life for individuals affected by SMA.
Collapse
Affiliation(s)
- Pankaj Bagga
- School of Bioengineering & Biosciences, Lovely Professional University (LPU), Phagwara, India
| | - Sudhakar Singh
- School of Bioengineering & Biosciences, Lovely Professional University (LPU), Phagwara, India
| | - Gobind Ram
- PG Department of Biotechnology, Layalpur Khalsa College, Jalandhar, India
| | - Subham Kapil
- Department of Zoology, DAV College Jalandhar, Jalandhar, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), Adama, Ethiopia
| |
Collapse
|
4
|
Lauria G, Curcio R, Tucci P. A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression. Biomolecules 2023; 14:47. [PMID: 38254647 PMCID: PMC10813207 DOI: 10.3390/biom14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.
Collapse
Affiliation(s)
| | - Rosita Curcio
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| | - Paola Tucci
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| |
Collapse
|
5
|
Poyatos-García J, Blázquez-Bernal Á, Selva-Giménez M, Bargiela A, Espinosa-Espinosa J, Vázquez-Manrique RP, Bigot A, Artero R, Vilchez JJ. CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:324-338. [PMID: 36789274 PMCID: PMC9898580 DOI: 10.1016/j.omtn.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
A single-nucleotide deletion in the stop codon of the nuclear import receptor transportin-3 (TNPO3), also involved in human immunodeficiency virus type 1 (HIV-1) infection, causes the ultrarare autosomal dominant disease limb-girdle muscular dystrophy D2 (LGMDD2) by extending the wild-type protein. Here, we generated a patient-derived in vitro model of LGMDD2 as an immortalized myoblast cell line carrying the TNP O 3 mutation. The cell model reproduced critical molecular alterations seen in patients, such as TNP O 3 overexpression, defects in terminal muscle markers, and autophagy overactivation. Correction of the TNP O 3 mutation via CRISPR-Cas9 editing caused a significant reversion of the pathological phenotypes in edited cells, including a complete absence of the mutant TNPO3 protein, as detected with a polyclonal antibody specific against the abnormal 15-aa peptide. Transcriptomic analyses found that 15% of the transcriptome was differentially expressed in model myotubes. CRISPR-Cas9-corrected cells showed that 44% of the alterations were rescued toward normal levels. MicroRNAs (miRNAs) analyses showed that around 50% of miRNAs with impaired expression because of the disease were recovered on the mutation edition. In summary, this work provides proof of concept of the potential of CRISPR-Cas9-mediated gene editing of TNP O 3 as a therapeutic approach and describes critical reagents in LGMDD2 research.
Collapse
Affiliation(s)
- Javier Poyatos-García
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Águeda Blázquez-Bernal
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Marta Selva-Giménez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Anne Bigot
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Ruben Artero
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Juan Jesús Vilchez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| |
Collapse
|
6
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
7
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
9
|
Usefulness of YouTube in Sharing Information about New Gene Therapy for Spinal Muscular Atrophy: A Content Analysis. Healthcare (Basel) 2023; 11:healthcare11010147. [PMID: 36611608 PMCID: PMC9819623 DOI: 10.3390/healthcare11010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
This study aimed to objectively assess YouTube videos' quality, reliability, and information delivery capability regarding novel spinal muscular atrophy treatments. Using the keywords "nusinersen", "spinraza", "ridisplam", "evrysdi", "onasemnogene abeparvovec", and "zolgensma", we were able to retrieve and screen 360 videos before settling on a final sample of 99 on 25 September 2022. Then, two independent raters used the mDISCERN and GQS instruments to evaluate the videos' reliability and quality and the Information Delivery Capability (IDC) score to assess the videos' accuracy and patient-friendliness. The quality, reliability, and information delivery capability of the videos about the new treatment for SMA were quite heterogeneous, with an average mDISCERN, GQS, and IDC score of 3.172 ± 0.899, 2.980 ± 1.025, and 4.141 ± 1.747, respectively. In-depth analysis showed that healthcare expert videos that explained contents while showing infographic supplements had good quality, reliability, and information delivery capability. As YouTube is already a dominant media platform, the public may obtain new information about novel therapeutics for SMA through YouTube. It is necessary to consider how SMA patients and caregivers can choose trusted sources with reliable information on YouTube, and our results can provide clues. Additionally, experts should strive to provide more accurate, reliable, and patient-oriented videos.
Collapse
|
10
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
11
|
fingeRNAt—A novel tool for high-throughput analysis of nucleic acid-ligand interactions. PLoS Comput Biol 2022; 18:e1009783. [PMID: 35653385 PMCID: PMC9197077 DOI: 10.1371/journal.pcbi.1009783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/14/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.
Collapse
|
12
|
Pan B, Yu J, Liu X. Upregulation of miR-886 indicates poor prognosis and promotes tumour progression of prostate cancer. Andrologia 2021; 54:e14296. [PMID: 34787343 DOI: 10.1111/and.14296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is a heterogeneous disease with high incidence and mortality. The functional role of miR-886 has been reported in various cancers and its dysregulation in prostate cancer was also found. Whether miR-886 was involved in the development of prostate cancer remains unclear, which was explored. miR-886 was evaluated in prostate cancer by RT-qPCR, and its clinical value was also assessed. Additionally, the role of miR-886 in prostate cancer cells was assessed by MTT and transwell assay. miR-886 was upregulated and was associated with the Gleason score and TNM stage of prostate cancer patients. miR-886 could predict the poor survival of patients. Moreover, miR-886 was a tumour promoter, of which the upregulation significantly promoted major cellular processes of prostate cancer. miR-886 mediated the disease development and predicted the clinical outcomes of patients. The knockdown of miR-886 inhibits cellular processes of prostate cancer, which provides a novel therapeutic target.
Collapse
Affiliation(s)
- Bin Pan
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Jie Yu
- Clinical Skills Training Center, Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiaoli Liu
- Hospital Office, Affiliated Hospital of Weifang Medical University, Shandong, China
| |
Collapse
|