1
|
Krett JD, Filippatou AG, Barreras P, Pardo CA, Gelber AC, Sotirchos ES. "Lupus Myelitis" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200329. [PMID: 39442039 PMCID: PMC11727606 DOI: 10.1212/nxi.0000000000200329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Previous reports of patients with myelitis associated with rheumatologic disease may have had unrecognized aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD). We clinicoradiologically and serologically characterized patients with myelitis associated with rheumatologic disease evaluated in the era of availability of MOG-IgG and more sensitive AQP4-IgG cell-based assays. METHODS A retrospective cohort (2018-2023) at Johns Hopkins Medicine with diagnoses of myelopathy and rheumatologic comorbidity was identified by electronic medical record (EMR) query. All patients with myelitis unrelated to typical multiple sclerosis (MS) were included and analyzed by chart review. RESULTS Of 238 patients identified by EMR query, 197 were excluded (148 not meeting prespecified inclusion criteria, 49 had typical MS), resulting in 41 patients for review. The mean age at myelitis onset was 44 ± 15 years; 39 (95%) were female. Rheumatologic diagnoses included 17 (41.5%) with systemic lupus erythematosus (SLE), 10 (24.3%) Sjögren syndrome (SS), 6 (15%) undifferentiated connective tissue disease (UCTD), 5 (12%) combinations of SLE/SS/UCTD with antiphospholipid antibody syndrome, 1 (2.4%) rheumatoid arthritis, 1 (2.4%) psoriatic arthritis, and 1 (2.4%) Behçet disease. 20 patients (49%) were diagnosed with AQP4-IgG seropositive NMOSD, 3 (7%) with MOGAD, and 18 (44%) had "double-seronegative" myelitis. Of these 18, 3 were diagnosed with AQP4-IgG seronegative NMOSD, 1 neuro-Behçet disease, and 14 other (unclassifiable) myelitis. Excluding 1 patient with neuro-Behçet disease, 18 (90%) of 20 AQP4-IgG seropositive patients had longitudinally extensive cord lesions compared with 5 (29%; p < 0.001) of 17 "double-seronegative" patients and 2 (67%) of 3 with MOGAD. "Double-seronegative" patients more commonly had CSF-restricted oligoclonal bands. Functional outcomes did not differ by diagnosis, and most patients received acute immunotherapy at the time of initial myelitis diagnosis with at least partial recovery over a median follow-up of 38 (interquartile range: 9-74) months. DISCUSSION Approximately half of our rheumatologic disease cohort with myelitis unrelated to MS had AQP4-IgG seropositive NMOSD while MOGAD accounted for a small but clinically relevant proportion of patients. Further research is needed to characterize myelitis etiology in patients who are seronegative for both AQP4-IgG and MOG-IgG.
Collapse
Affiliation(s)
- Jonathan D Krett
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angeliki G Filippatou
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paula Barreras
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carlos A Pardo
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan C Gelber
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elias S Sotirchos
- From the Division of Neuroimmunology and Neurological Infections (J.D.K., A.G.F., P.B., C.A.P., E.S.S.), Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; Multiple Sclerosis and Neuroimmunology Center (P.B.), Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, University of California, Los Angeles; and Division of Rheumatology (A.C.G.), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Jeyakumar N, Lerch M, Dale RC, Ramanathan S. MOG antibody-associated optic neuritis. Eye (Lond) 2024; 38:2289-2301. [PMID: 38783085 PMCID: PMC11306565 DOI: 10.1038/s41433-024-03108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is a demyelinating disorder, distinct from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). MOGAD most frequently presents with optic neuritis (MOG-ON), often with characteristic clinical and radiological features. Bilateral involvement, disc swelling clinically and radiologically, and longitudinally extensive optic nerve hyperintensity with associated optic perineuritis on MRI are key characteristics that can help distinguish MOG-ON from optic neuritis due to other aetiologies. The detection of serum MOG immunoglobulin G utilising a live cell-based assay in a patient with a compatible clinical phenotype is highly specific for the diagnosis of MOGAD. This review will highlight the key clinical and radiological features which expedite diagnosis, as well as ancillary investigations such as visual fields, visual evoked potentials and cerebrospinal fluid analysis, which may be less discriminatory. Optical coherence tomography can identify optic nerve swelling acutely, and atrophy chronically, and may transpire to have utility as a diagnostic and prognostic biomarker. MOG-ON appears to be largely responsive to corticosteroids, which are often the mainstay of acute management. However, relapses are common in patients in whom follow-up is prolonged, often in the context of early or rapid corticosteroid tapering. Establishing optimal acute therapy, the role of maintenance steroid-sparing immunotherapy for long-term relapse prevention, and identifying predictors of relapsing disease remain key research priorities in MOG-ON.
Collapse
Affiliation(s)
- Niroshan Jeyakumar
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Magdalena Lerch
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Clinical Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- TY Nelson Department of Neurology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Neurology, Concord Hospital, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Corbali O, Saxena S, Patel R, Lokhande H, Chitnis T. NF-κB and STAT3 activation in CD4 T cells in pediatric MOG antibody-associated disease. J Neuroimmunol 2023; 384:578197. [PMID: 37770354 DOI: 10.1016/j.jneuroim.2023.578197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/30/2023]
Abstract
In this study, we examined CD4 T cell activation using various stimuli in pediatric MOGAD patients (n = 4, untreated remission samples) and healthy controls (n = 5), to understand how both antigen-specific and bystander mechanisms contribute to CD4 T cell activation in MOGAD. TNFα, IL6, and MOG peptide pool were found to activate NF-κB or STAT3 pathways by measuring the expression of regulators (A20, IκBα) and phosphorylated subunits (phospho-p65 and phospho-STAT3) using immunolabeling. Prednisolone reversed activation of both NF-κB and STAT3 and increased the expression of A20 and IκBα. TNFR blocking partially reversed NF-κB activation in certain CD4 T cell subsets, but did not effect STAT3 activation. We observed that activation of NF-κB and STAT3 in response to various stimuli behaves mostly same in MOGAD (remission) and HC. IL6 stimulation resulted in higher STAT3 phosphorylation in MOGAD patients at 75 min, specifically in central and effector memory CD4 T cells (with unadjusted p-values). These findings suggest the potential therapeutic targeting of NF-κB and STAT3 pathways in MOGAD. Further investigation is needed to validate the significance of extended STAT3 phosphorylation and its correlation with IL6 receptor blocker treatment response.
Collapse
Affiliation(s)
- Osman Corbali
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Patel
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hrishikesh Lokhande
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Lerch M, Bauer A, Reindl M. The Potential Pathogenicity of Myelin Oligodendrocyte Glycoprotein Antibodies in the Optic Pathway. J Neuroophthalmol 2023; 43:5-16. [PMID: 36729854 PMCID: PMC9924971 DOI: 10.1097/wno.0000000000001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an acquired inflammatory demyelinating disease with optic neuritis (ON) as the most frequent clinical symptom. The hallmark of the disease is the presence of autoantibodies against MOG (MOG-IgG) in the serum of patients. Whereas the role of MOG in the experimental autoimmune encephalomyelitis animal model is well-established, the pathogenesis of the human disease and the role of human MOG-IgG is still not fully clear. EVIDENCE ACQUISITION PubMed was searched for the terms "MOGAD," "optic neuritis," "MOG antibodies," and "experimental autoimmune encephalomyelitis" alone or in combination, to find articles of interest for this review. Only articles written in English language were included and reference lists were searched for further relevant papers. RESULTS B and T cells play a role in the pathogenesis of human MOGAD. The distribution of lesions and their development toward the optic pathway is influenced by the genetic background in animal models. Moreover, MOGAD-associated ON is frequently bilateral and often relapsing with generally favorable visual outcome. Activated T-cell subsets create an inflammatory environment and B cells are necessary to produce autoantibodies directed against the MOG protein. Here, pathologic mechanisms of MOG-IgG are discussed, and histopathologic findings are presented. CONCLUSIONS MOGAD patients often present with ON and harbor antibodies against MOG. Furthermore, pathogenesis is most likely a synergy between encephalitogenic T and antibody producing B cells. However, to which extent MOG-IgG are pathogenic and the exact pathologic mechanism is still not well understood.
Collapse
|
6
|
Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol 2023; 14:1137998. [PMID: 36925938 PMCID: PMC10011114 DOI: 10.3389/fneur.2023.1137998] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Myelin Oligodendrocyte Glycoprotein Antibody Disease (MOGAD) is a spectrum of diseases, including optic neuritis, transverse myelitis, acute disseminated encephalomyelitis, and cerebral cortical encephalitis. In addition to distinct clinical, radiological, and immunological features, the infectious prodrome is more commonly reported in MOGAD (37-70%) than NMOSD (15-35%). Interestingly, pediatric MOGAD is not more aggressive than adult-onset MOGAD, unlike in multiple sclerosis (MS), where annualized relapse rates are three times higher in pediatric-onset MS. MOGAD pathophysiology is driven by acute attacks during which T cells and MOG antibodies cross blood brain barrier (BBB). MOGAD lesions show a perivenous confluent pattern around the small veins, lacking the radiological central vein sign. Initial activation of T cells in the periphery is followed by reactivation in the subarachnoid/perivascular spaces by MOG-laden antigen-presenting cells and inflammatory CSF milieu, which enables T cells to infiltrate CNS parenchyma. CD4+ T cells, unlike CD8+ T cells in MS, are the dominant T cell type found in lesion histology. Granulocytes, macrophages/microglia, and activated complement are also found in the lesions, which could contribute to demyelination during acute relapses. MOG antibodies potentially contribute to pathology by opsonizing MOG, complement activation, and antibody-dependent cellular cytotoxicity. Stimulation of peripheral MOG-specific B cells through TLR stimulation or T follicular helper cells might help differentiate MOG antibody-producing plasma cells in the peripheral blood. Neuroinflammatory biomarkers (such as MBP, sNFL, GFAP, Tau) in MOGAD support that most axonal damage happens in the initial attack, whereas relapses are associated with increased myelin damage.
Collapse
Affiliation(s)
- Osman Corbali
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| |
Collapse
|
7
|
Gritsch D, Valencia-Sanchez C. Drug-related immune-mediated myelopathies. Front Neurol 2022; 13:1003270. [PMID: 36247761 PMCID: PMC9557103 DOI: 10.3389/fneur.2022.1003270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Iatrogenic immune-mediated inflammatory disorders of the spinal cord are an uncommon but potentially severe complication of drug therapy for several human diseases. Particularly the introduction of novel biological agents in the treatment of systemic inflammatory disorders and cancer immunotherapy have led to a significant increase in immune-related adverse events of the central nervous system (CNS). The use of Tumor necrosis factor alpha (TNF-alpha) inhibitors in rheumatic and inflammatory bowel diseases has been associated with demyelinating and other inflammatory CNS conditions, including myelitis. The introduction of immune checkpoint inhibitors in the treatment of several human malignancies has led to an increase in drug-induced immune-related adverse events including in the CNS. Other drugs that have been associated with immune-mediated myelitis include tyrosine-kinase inhibitors and chimeric antigen receptor (CAR) T Cell therapy. A high degree of suspicion is necessary when diagnosing these conditions, as early diagnosis and treatment is crucial in preventing further neurological damage and disability. The treatment of drug-induced inflammatory myelitis typically involves administration of high-dose intravenous corticosteroids, however additional immunosuppressive agents may be required in severe or refractory cases. While most cases are monophasic and remit following discontinuation of the offending agent, chronic immunosuppressive therapy may be indicated in cases with a progressive or relapsing disease course or when a diagnosis of a specific underlying neuro-inflammatory disorder is made. Outcomes are generally favorable, however depend on the specific therapeutic agent used, the clinical presentation and patient factors. In this review we aim to describe the clinical characteristics, imaging findings and management for the most common forms of iatrogenic immune-mediated myelopathies.
Collapse
Affiliation(s)
- David Gritsch
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Cristina Valencia-Sanchez
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
- *Correspondence: Cristina Valencia-Sanchez
| |
Collapse
|
8
|
Sechi E, Cacciaguerra L, Chen JJ, Mariotto S, Fadda G, Dinoto A, Lopez-Chiriboga AS, Pittock SJ, Flanagan EP. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol 2022; 13:885218. [PMID: 35785363 PMCID: PMC9247462 DOI: 10.3389/fneur.2022.885218] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management.
Collapse
Affiliation(s)
- Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
| | - John J. Chen
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Fadda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Sean J. Pittock
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Eoin P. Flanagan
| |
Collapse
|