1
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
2
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Countering impaired glucose homeostasis during catch-up growth with essential polyunsaturated fatty acids: is there a major role for improved insulin sensitivity? Nutr Diabetes 2021; 11:4. [PMID: 33414371 PMCID: PMC7791023 DOI: 10.1038/s41387-020-00143-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Background/Objectives Catch-up growth, an important risk factor for later obesity and type 2 diabetes, is often characterized by a high rate of fat deposition associated with hyperinsulinemia and glucose intolerance. We tested here the hypothesis that refeeding on a high-fat diet rich in essential polyunsaturated fatty acids (ePUFA) improves glucose homeostasis primarily by enhancing insulin sensitivity in skeletal muscles and adipose tissues. Methods Rats were caloric restricted for 2 weeks followed by 1–2 weeks of isocaloric refeeding on either a low-fat (LF) diet, a high-fat (HF) diet based on animal fat and high in saturated and monounsaturated fatty acids (HF SMFA diet), or a HF diet based on vegetable oils (1:1 mixture of safflower and linseed oils) and rich in the essential fatty acids linoleic and α-linolenic acids (HF ePUFA diet). In addition to measuring body composition and a test of glucose tolerance, insulin sensitivity was assessed during hyperinsulinemic-euglycemic clamps at the whole-body level and in individual skeletal muscles and adipose tissue depots. Results Compared to animals refed the LF diet, those refed the HF-SMFA diet showed a higher rate of fat deposition, higher plasma insulin and glucose responses during the test of glucose tolerance, and markedly lower insulin-stimulated glucose utilization at the whole body level (by a-third to a-half) and in adipose tissue depots (by 2–5 folds) during insulin clamps. While refeeding on the ePUFA diet prevented the increases in fat mass and in plasma insulin and glucose, the results of insulin clamps revealed that insulin-stimulated glucose utilization was not increased in skeletal muscles and only marginally higher in adipose tissues and at the whole-body level. Conclusions These results suggest only a minor role for enhanced insulin sensitivity in the mechanisms by which diets high in ePUFA improves glucose homeostasis during catch-up growth.
Collapse
|
4
|
Nutrigenomic effect of conjugated linoleic acid on growth and meat quality indices of growing rabbit. PLoS One 2019; 14:e0222404. [PMID: 31600212 PMCID: PMC6786800 DOI: 10.1371/journal.pone.0222404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Conjugated linoleic acid was detected in rabbit caecotrophs, due to the presence of microbial lipid activity in rabbit cecum. However, the effect of CLA as a functional food in growing rabbit is not well established. Therefore, this study was conducted to determine the effect of CLA on production, meat quality, and its nutrigenomic effect on edible parts of rabbit carcass including skeletal muscle, liver, and adipose tissue. Therefore, seventy five weaned V-Line male rabbits, 30 days old, were randomly allocated into three dietary treatments receiving either basal control diet, diet supplemented with 0.5% (CLAL), or 1% CLA (CLAH). Total experimental period (63 d) was segmented into 7 days adaptation and 56 days experimental period. Dietary supplementation of CLA did not alter growth performance, however, the fat percentage of longissimus lumborum muscle was decreased, with an increase in protein and polyunsaturated fatty acids (PUFA) percentage. Saturated fatty acids (SFA) and mono unsaturated fatty acids (MUFA) were not increased in CLA treated groups. There was tissue specific sensing of CLA, since subcutaneous adipose tissue gene expression of PPARA was downregulated, however, CPT1A tended to be upregulated in liver of CLAL group only (P = 0.09). In skeletal muscle, FASN and PPARG were upregulated in CLAH group only (P ≤0.01). Marked cytoplasmic vacuolation was noticed in liver of CLAH group without altering hepatocyte structure. Adipocyte size was decreased in CLA fed groups, in a dose dependent manner (P <0.01). Cell proliferation determined by PCNA was lower (P <0.01) in adipose tissue of CLA groups. Our data indicate that dietary supplementation of CLA (c9,t11-CLA and t10,c12- CLA) at a dose of 0.5% in growing rabbit diet produce rabbit meat rich in PUFA and lower fat % without altering growth performance and hepatocyte structure.
Collapse
|
5
|
Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, Mohankumar SK. Cis-9, Trans-11 Conjugated Linoleic Acid Reduces Phosphoenolpyruvate Carboxykinase Expression and Hepatic Glucose Production in HepG2 Cells. Lipids 2019; 54:369-379. [PMID: 31124166 DOI: 10.1002/lipd.12154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mustafa Al-Shagga
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yan Pan
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sue-Mian Then
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kang Nee Ting
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy (Ooty), JSS Academy of Higher Education & Research, Rocklands, Udhagamandalam, 643001, Tamil Nadu, India
| |
Collapse
|
6
|
Hypoglycemic and hypolipidemic effects of fermented milks with added roselle ( Hibiscus sabdariffa L.) extract. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Yoshioka Y, Harada E, Ge D, Imai K, Katsuzaki H, Mishima T, Gabazza EC, Ashida H. Adenosine isolated from Grifola gargal promotes glucose uptake via PI3K and AMPK signalling pathways in skeletal muscle cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
9
|
Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice through Activation of Insulin and AMPK Signaling Pathways. PLoS One 2016; 11:e0161704. [PMID: 27598258 PMCID: PMC5012709 DOI: 10.1371/journal.pone.0161704] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
Abstract
Procyanidins are the oligomeric or polymeric forms of epicatechin and catechin. In this study, we isolated and purified dimer to tetramer procyanidins from black soybean seed coat and investigated the anti-hyperglycemic effects by focusing on glucose transporter 4 (GLUT4) translocation and the underlying molecular mechanism in skeletal muscle of mice. The anti-hyperglycemic effects of procyanidins were also compared with those of monomer (-)-epicatechin (EC) and major anthocyanin, cyanidin-3-O-β-glucoside (C3G). To investigate GLUT4 translocation and its related signaling pathways, ICR mice were orally given procyanidins, EC and C3G in water at 10 μg/kg body weight. The mice were sacrificed 60 min after the dose of polyphenols, and soleus muscle was extracted from the hind legs. The results showed that trimeric and tetrameric procyanidins activated both insulin- and AMPK-signaling pathways to induce GLUT4 translocation in muscle of ICR mice. We confirmed that procyanidins suppressed acute hyperglycemia with an oral glucose tolerance test in a dose-dependent manner. Of these beneficial effects, cinnamtannin A2, one of the tetramers, was the most effective. In conclusion, procyanidins, especially cinnamtannin A2, significantly ameliorate postprandial hyperglycemia at least in part by promoting GLUT4 translocation to the plasma membrane by activating both insulin- and AMPK-signaling pathways.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657–8501, Japan
| | - Liuqing Wang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657–8501, Japan
| | - Fumio Nanba
- Fujicco Co. Ltd, Research Development, Kobe, Hyogo 650–8558, Japan
| | - Chiaki Ito
- Fujicco Co. Ltd, Research Development, Kobe, Hyogo 650–8558, Japan
| | - Toshiya Toda
- Fujicco Co. Ltd, Research Development, Kobe, Hyogo 650–8558, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657–8501, Japan
- * E-mail:
| |
Collapse
|
10
|
Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and/or fish-soybean oils blend. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol 2016; 7:221-44. [DOI: 10.1146/annurev-food-041715-033028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
12
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
13
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
14
|
Kim Y, Kim D, Good DJ, Park Y. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5212-5223. [PMID: 25976059 DOI: 10.1021/acs.jafc.5b00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugated linoleic acid (CLA) has been reported to prevent body weight gain and fat accumulation in part by improving physical activity in mice. However, the effects of postweaning administration of CLA on the development of obesity later in life have not yet been demonstrated. The current study investigated the role of postweaning CLA treatment on skeletal muscle energy metabolism in genetically induced inactive adult-onset obese model, nescient basic helix-loop-helix 2 knockout (N2KO) mice. Four-week-old male N2KO and wild type mice were fed either control or a CLA-containing diet (0.5%) for 4 weeks, and then CLA was withdrawn and control diet provided to all mice for the following 8 weeks. Postweaning CLA supplementation in wild type animals, but not N2KO mice, may activate AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-δ (PPARδ) as well as promote desensitization of phosphatase and tensin homologue (PTEN) and sensitization of protein kinase B (AKT) at threonine 308 in gastrocnemius skeletal muscle, improving voluntary activity and glucose homeostasis. We suggest that postweaning administration of CLA may in part stimulate the underlying molecular targets involved in muscle energy metabolism to reduce weight gain in normal animals, but not in the genetically induced inactive adult-onset animal model.
Collapse
Affiliation(s)
| | | | - Deborah J Good
- §Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
15
|
Conjugated Linoleic Acid (CLA) Stimulates Mitochondrial Biogenesis Signaling by the Upregulation of PPARγ Coactivator 1α (PGC‐1α) in C2C12 Cells. Lipids 2015; 50:329-38. [DOI: 10.1007/s11745-015-4000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
|
16
|
The reduced proportion of New splenic T-cells in the zinc-deficient growing rat is not due to increased susceptibility to apoptosis. Immunobiology 2014; 219:602-10. [DOI: 10.1016/j.imbio.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/23/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
|
17
|
Park SY, Kim MH, Ahn JH, Lee SJ, Lee JH, Eum WS, Choi SY, Kwon HY. The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:255-61. [PMID: 24976766 PMCID: PMC4071179 DOI: 10.4196/kjpp.2014.18.3.255] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and α-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases (PKCθ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of 500 µM EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-β-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea. ; Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Min Hye Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Joung Hoon Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Su Jin Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Jong Ho Lee
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| |
Collapse
|
18
|
Daniel B, Green O, Viskind O, Gruzman A. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:434-43. [DOI: 10.3109/21678421.2013.808226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Yamashita Y, Wang L, Tinshun Z, Nakamura T, Ashida H. Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11366-11371. [PMID: 23106150 DOI: 10.1021/jf303597c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The antihyperglycemic effects of tea are well documented. However, the effects of fermented tea on the translocation of glucose transporter 4 (GLUT4), the major glucose transporter for glucose uptake in the postprandial period, in skeletal muscle and the underlying molecular mechanisms are not fully understood. This study investigated the translocation of GLUT4 and its related signaling pathways in skeletal muscle of male ICR mice given fermented tea. Intake of oolong, black, or pu-erh tea for 7 days enhanced GLUT4 translocation to the plasma membrane of skeletal muscle. Each type of fermented tea stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K), Akt/protein kinase B, and AMP-activated protein kinase (AMPK). Fermented tea also increased the protein expression of insulin receptor. These results strongly suggest that fermented tea activates both PI3K/Akt- and AMPK-dependent signaling pathways to induce GLUT4 translocation and increases the expression of insulin receptor to improve glucose intolerance.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|