1
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
2
|
Dharmapuri G, Kotha AK, Kalangi SK, Reddanna P. Mangiferin, A Naturally Occurring Glucosylxanthone, Induces Apoptosis in Caco-2 Cells In Vitro and Exerts Protective Effects on Acetic Acid-Induced Ulcerative Colitis in Mice through the Regulation of NLRP3. ACS Pharmacol Transl Sci 2024; 7:1270-1277. [PMID: 38751614 PMCID: PMC11091985 DOI: 10.1021/acsptsci.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Inflammatory bowel diseases (IBD), an inflammatory disease, include Crohn's disease and ulcerative colitis. Dysregulated autoimmune response to gut dysbiosis is mainly involved in the pathogenesis of IBD and is triggered by various inciting environmental factors. With its rising prevalence in every continent, IBD has evolved into a global disease, which is on the rise, affecting people of all ages. There is a growing incidence of IBD in the elderly population, as evidenced by epidemiological data. IBD is characterized by an inflammatory process that requires a lifelong treatment. The main challenge in IBD management is the adverse side effects associated with almost all of the currently available drugs. Hence, there is a search for drugs with more efficacy and fewer side effects. Natural products with great structural diversity and ease of modification chemically are being explored, as they were shown to control IBD by safely suppressing pro-inflammatory pathways. The present study aims at understanding the role of mangiferin, a COX-2 inhibitor isolated from tubers of Pueraria tuberosa in the treatment of IBD and colon cancer, in vitro on the Caco-2 human colon cancer cell line and in vivo in the acetic acid-induced IBD mouse model. In the acetic acid-induced colitis model, it prevented the decrease in length of the colon, mucosal erosion, and cellular infiltration in a dose-dependent manner. The expression levels of various pro-inflammatory markers like COX-2, IL1β, TNF-α, INF-γ, IL-6, NLRP3, and caspase-1 were downregulated in an acetic acid-induced mouse model on treatment with mangiferin in a dose dependent manner. Mangiferin also showed anticancer effects on Caco-2 cells by increasing the expression of Fas ligand, Fas receptor, FADD, caspase-8, and caspase-3 proteins, whereas Bid and Bcl-2 proteins showed decreased expression. These data suggest that mangiferin, an inhibitor of COX, induces apoptosis in colon cancer cells in vitro and protects mice from acetic acid-induced colitis in vivo.
Collapse
Affiliation(s)
- Gangappa Dharmapuri
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anil Kumar Kotha
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh K. Kalangi
- Department
of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurugram 122505,India
| | - Pallu Reddanna
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Chang B, Wang Y, Tu W, Zhang Z, Pu Y, Xie L, Yuan F, Gao Y, Xu N, Yao Q. Regulatory effects of mangiferin on LPS-induced inflammatory responses and intestinal flora imbalance during sepsis. Food Sci Nutr 2024; 12:2068-2080. [PMID: 38455195 PMCID: PMC10916552 DOI: 10.1002/fsn3.3907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 μg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.
Collapse
Affiliation(s)
- Bo‐tao Chang
- Department of PostgraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yang Wang
- Department of General SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Wen‐lian Tu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Zhi‐qing Zhang
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Yan‐fang Pu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Li Xie
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Fang Yuan
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Ying Gao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Ning Xu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Qi Yao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
4
|
Hering A, Stefanowicz-Hajduk J, Dziomba S, Halasa R, Krzemieniecki R, Sappati S, Baginski M, Ochocka JR. Mangiferin Affects Melanin Synthesis by an Influence on Tyrosinase: Inhibition, Mechanism of Action and Molecular Docking Studies. Antioxidants (Basel) 2023; 12:antiox12051016. [PMID: 37237882 DOI: 10.3390/antiox12051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mangiferin is a strong antioxidant that presents a wide range of biological activities. The aim of this study was to evaluate, for the first time, the influence of mangiferin on tyrosinase, an enzyme responsible for melanin synthesis and the unwanted browning process of food. The research included both the kinetics and molecular interactions between tyrosinase and mangiferin. The research proved that mangiferin inhibits tyrosinase activity in a dose-dependent manner with IC50 290 +/- 6.04 µM, which was found comparable with the standard kojic acid (IC50 217.45 +/- 2.54 µM). The mechanism of inhibition was described as mixed inhibition. The interaction between tyrosinase enzyme and mangiferin was confirmed with capillary electrophoresis (CE). The analysis indicated the formation of two main, and four less significant complexes. These results have also been supported by the molecular docking studies. It was indicated that mangiferin binds to tyrosinase, similarly to L-DOPA molecule, both in the active center and peripheral site. As it was presented in molecular docking studies, mangiferin and L-DOPA molecules can interact in a similar way with surrounding amino acid residues of tyrosinase. Additionally, hydroxyl groups of mangiferin may interact with amino acids on the tyrosinase external surface causing non-specific interaction.
Collapse
Affiliation(s)
- Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Rafal Halasa
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Subrahmanyam Sappati
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Jadwiga Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
5
|
Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM. Antioxidant and Anti-Inflammatory Properties of Phytochemicals Found in the Yucca Genus. Antioxidants (Basel) 2023; 12:574. [PMID: 36978823 PMCID: PMC10044844 DOI: 10.3390/antiox12030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The Yucca genus encompasses about 50 species native to North America. Species within the Yucca genus have been used in traditional medicine to treat pathologies related to inflammation. Despite its historical use and the popular notion of its antioxidant and anti-inflammatory properties, there is a limited amount of research on this genus. To better understand these properties, this work aimed to analyze phytochemical composition through documentary research. This will provide a better understanding of the molecules and the mechanisms of action that confer such antioxidant and anti-inflammatory properties. About 92 phytochemicals present within the genus have reported antioxidant or anti-inflammatory effects. It has been suggested that the antioxidant and anti-inflammatory properties are mainly generated through its free radical scavenging activity, the inhibition of arachidonic acid metabolism, the decrease in TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), iNOS (Inducible nitric oxide synthase), and IL-1β (Interleukin 1β) concentration, the increase of GPx (Glutathione peroxidase), CAT (Catalase), and SOD (Superoxide dismutase) concentration, and the inhibition of the MAPK (Mitogen-Activated Protein Kinase), and NF-κB (Nuclear factor kappa B), and the activation of the Nrf2 (Nuclear factor erythroid 2-related factor) signaling pathway. These studies provide evidence of its use in traditional medicine against pathologies related to inflammation. However, more models and studies are needed to properly understand the activity of most plants within the genus, its potency, and the feasibility of its use to help manage or treat chronic inflammation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| |
Collapse
|
6
|
Mangiferin: the miraculous xanthone with diverse pharmacological properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:851-863. [PMID: 36656353 DOI: 10.1007/s00210-022-02373-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Mangiferin (1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] xanthen-9-one) is a bioactive component derived primarily from the mango tree. Belonging to the Xanthone family, its structure allows it to engage with a variety of pharmacological targets. The symmetric linked core of xanthones has a heterogeneous biogenetic background. The carbon atoms are designated in a biochemical order, which reveals the reason of ring A (C1-C4) being referred to as acetate originated, and ring B (C5-C8) is referred to as shikimate originated. The antibacterial, hypocholesterolemic, antiallergic, cardiotonic, antidiabetic, anti-neoplastic, neuroprotective, antioxidant and immunomodulatory properties have all been demonstrated for the secondary metabolite. This study assessed and explained the important medical properties of mangiferin available in published literature, as well as its natural source, biosynthesis, absorption and bioavailability; multiple administration routes; metabolism; nanotechnology for enhanced efficacy of mangiferin and its toxicity, to aid the anticipated on-going potential of mangiferin as a novel diagnostic treatment.
Collapse
|
7
|
Wang M, Tong K, Chen Z, Wen Z. Mechanisms of 15-Epi-LXA4-Mediated HO-1 in Cytoprotection Following Inflammatory Injury. J Surg Res 2023; 281:245-255. [PMID: 36209683 DOI: 10.1016/j.jss.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Heme oxygenase-1 (HO-1) is a protective protein in oxidative stress response. LXA4 is an "inflammatory braking signal" that is widely studied at present. The purpose of this study was to elucidate that LXA4 can protect cells by inducing HO-1 in human pulmonary microvascular endothelial cells (HPMECs) as in vitro model to explain acute lung injury after severe acute pancreatitis. METHODS This study was performed in two parts: (1) To investigate the mechanisms of lipoxin A4-induced HO-1 expression in vitro, the study subjects were divided into four groups: a control group, LXA4 group (50 ng/mL LXA4), inhibitor group (50 ng/mL LXA4 + 20 μM LY294002 or 50 ng/mL LXA4 + 2 nmol/mL Bis II), and agonist group (50 ng/mL insulin-like growth factor 1, PMA). Western blotting was used to detect the expression of p-Akt, Akt, protein kinase C (PKC), p-Nrf2, Nrf2, and Keap1, and the location of Nrf2 was detected using immunofluorescence. The activation of antioxidant responsive element induced by Nrf2 was detected using Electrophoretic Mobility Shift Assay and (2) to investigate the cytoprotection of HO-1 induced by LXA4 in vitro, the subjects were divided into four groups: a control group, tumor necrosis factor α (TNF-α) group (50 ng/mL), LXA4 group (50 ng/mL TNF-α + 50 ng/mL LXA4), and Zinc protoporphyrin IX group (pretreated with 0.5 μM Zinc protoporphyrin IXfor 12 h, followed by 50 ng/mL TNF-α + 50 ng/mL LXA4). BCECF/AM-labeled THP-1 cells were used to analyze the adhesion of HPMECs, and a mitochondrial membrane potential assay kit with JC-1 was used to analyze the apoptosis of HPMECs. RESULTS In part one, (1) LXA4 upregulated the expression of HO-1 in a dose-dependent manner and (2) LXA4 activated the PI3K/Akt and PKC pathways and modulated the phosphorylation and subsequent depolymerization of Nrf2 from Keap1, promoting the translocation of Nrf2 to the nucleus. In part two, (1) LXA4 reversed the changes in mitochondrial membrane potential to alleviate apoptosis in HPMECs and (2) LXA4 attenuated the adhesion of HPMECs induced by TNF-α. CONCLUSIONS LXA4 can activate the PI3K/Akt and PKC pathways and induce the phosphorylation of Nrf2, resulting in the upregulation of HO-1. In addition, LXA4 alleviates adhesion and protects mitochondrial function by upregulating the expression of HO-1, which exerts cytoprotection in severe acute pancreatitis-induced lung injury.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kun Tong
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhe Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhengde Wen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Key Laboratory of perioperative medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Lan X, Li Y, Li H, Song S, Yuan X, Zhou H, Chen Q, Zhang J. Drug Metabolite Cluster Centers-based Strategy for Comprehensive Profiling of Neomangiferin Metabolites in vivo and in vitro and Network Pharmacology Study on Anti-inflammatory Mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Tiwari PC, Chaudhary MJ, Pal R, Kartik S, Nath R. Pharmacological, Biochemical and Immunological Studies on Protective Effect of Mangiferin in 6-Hydroxydopamine (6-OHDA)-Induced Parkinson's Disease in Rats. Ann Neurosci 2022; 28:137-149. [PMID: 35341236 PMCID: PMC8948331 DOI: 10.1177/09727531211051976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Parkinson’s disease is a neurodegenerative disorder and is marked by
inflammation and death of neurons in the striatum region of the midbrain. It
has been reported that expression of NF-κB increases during Parkinson’s
disease, which promotes oxidative stress, stimulates release of
proinflammatory cytokines, and induces expression of nitric oxide.
Therefore, in this study, we have used mangiferin a specific NF-κB
inhibitor. Mangiferin is a polyphenolic compound traditionally used for its
antioxidant and anti-inflammatory properties. Methods: The study utilized male Wistar rats weighing 200–250 g (56 rats;
n = 8/group). On day “0,” stereotaxic surgery of rats
was done to induce 6-hydroxydopamine lesioning in rats. Coordinates for
substantia nigra were anteroposterior-2 mm, mediolateral-5 mm and
dorsoventral-8.2 mm. After 14 days, those rats which show at least 210
contralateral rotations after administration of apomorphine (0.5 mg/kg S.C.)
were selected for the study and were given treatment for 28 days. On day 28
of treatment, rats were subjected to behavioral studies to evaluate the
effect of mangiferin and their brains were taken out after euthanasia to
perform biochemical, molecular and immunological studies. Results: Treatment with mangiferin significantly improves the key parameters of
locomotor activity and oxidative stress and reduces the parameters of
inflammatory stress. Also, the activity of caspases was reduced. Significant
decrease in activity of both cyclooxygenase 1 and 2 was also observed.
Maximum improvement in all parameters was observed in rats treated with
grouping of mangiferin 45 µg/kg and levodopa 10 mg/kg. Treatment with
levodopa alone has no significant effect on biochemical and molecular
parameters though it significantly improves behavioral parameters. Conclusion: Current treatment of Parkinson’s disease does not target progression of
Parkinson’s disease. Results of this study suggest that mangiferin has
protective effect in hemi-Parkinsonian rats. Therefore, the combination
therapy of mangiferin and levodopa can be helpful in management of
Parkinson’s disease.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shipra Kartik
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
11
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|
12
|
Awny MM, Al-Mokaddem AK, Ali BM. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch Biochem Biophys 2021; 711:108982. [PMID: 34400143 DOI: 10.1016/j.abb.2021.108982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that causes reproductive defects in male animal models. This study was conducted to explore the plausible modulatory effects of mangiferin (MF) against DEHP-induced testicular injury in rats. Thirty-two adult male albino rats were allocated into four groups. Two groups were given DEHP (2 g/kg/day, p.o) for 14 days. One of these groups was treated with MF (20 mg/kg/day, i.p) for 7 days before and 14 days after DEHP administration. A vehicle-treated control was included, and another group of rats was given MF only. Results revealed that MF treatment suppressed oxidative testicular injury by amplifying the mRNA expression of nuclear factor-erythroid 2 related factor-2 (Nrf2) and increasing hemoxygenase-1 (HO-1), glutathione, and total antioxidant capacity (TAC) levels. This treatment also enhanced superoxide dismutase activity, but it decreased malondialdehyde and nitric oxide levels. MF had an anti-inflammatory characteristic, as demonstrated by the downregulation of the mRNA of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The content of tumor necrosis factor-alpha also decreased. MF modulated the apoptotic pathway by suppressing the mRNA of cytochrome c (Cyt c), Fas ligand content, Bax IHC expression, caspase-3 activity and cleaved caspase-3 IHC expression. It also upregulated the expression levels of heat-shock protein 70 (HSP70) and B-cell lymphoma 2. Moreover, MF upregulated the mRNA expression levels of HSP70 and c-kit and enriched the content of steroidogenic acute regulatory (StAR) protein, which were reflected in serum testosterone levels. This result indicated that MF played crucial roles in steroidogenesis and spermatogenesis. Besides, the activities of testicular marker enzymes, namely, acid and alkaline phosphatases, and lactate dehydrogenase, significantly increased. Histopathological observations provided evidence supporting the biochemical and molecular measurements. In conclusion, MF provided protective mechanisms against the DEHP-mediated deterioration of testicular functions partially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. It also involved the restoration of steroidogenesis and spermatogenesis through the modulation of Nrf2/HO-1, NF-κB/Cyt c/HSP70, and c-Kit signaling cascades.
Collapse
Affiliation(s)
- Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
13
|
Lv S, Li X, Wang H. The Role of the Effects of Endoplasmic Reticulum Stress on NLRP3 Inflammasome in Diabetes. Front Cell Dev Biol 2021; 9:663528. [PMID: 33937267 PMCID: PMC8079978 DOI: 10.3389/fcell.2021.663528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) is an important organelle for the protein synthesis, modification, folding, assembly, and the transport of new peptide chains. When the folding ability of ER proteins is impaired, the accumulation of unfolded or misfolded proteins in ER leads to endoplasmic reticulum stress (ERS). The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, can induce the maturation and secretion of interleukin-1beta (IL-1β) and IL-18 through activating caspase-1. It is associated with many diseases. Studies have shown that ERS can regulate NLRP3 inflammasome in many diseases including diabetes. However, the mechanism of the effects of ERS on NLRP3 inflammasome in diabetes has not been fully understood. This review summarizes the recent researches about the effects of ERS on NLRP3 inflammasome and the related mechanism in diabetes to provide ideas for the relevant basic research in the future.
Collapse
Affiliation(s)
- Shuangyu Lv
- Bioinformatics Center, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiaotian Li
- Bioinformatics Center, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Honggang Wang
- Bioinformatics Center, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
14
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
15
|
Therapeutic Potential of Heme Oxygenase-1 in Aneurysmal Diseases. Antioxidants (Basel) 2020; 9:antiox9111150. [PMID: 33228202 PMCID: PMC7699558 DOI: 10.3390/antiox9111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) and intracranial aneurysm (IA) are serious arterial diseases in the aorta and brain, respectively. AAA and IA are associated with old age in males and females, respectively, and if rupture occurs, they carry high morbidity and mortality. Aneurysmal subarachnoid hemorrhage (SAH) due to IA rupture has a high rate of complication and fatality. Despite these severe clinical outcomes, preventing or treating these devastating diseases remains an unmet medical need. Inflammation and oxidative stress are shared pathologies of these vascular diseases. Therefore, therapeutic strategies have focused on reducing inflammation and reactive oxygen species levels. Interestingly, in response to cellular stress, the inducible heme oxygenase-1 (HO-1) is highly upregulated and protects against tissue injury. HO-1 degrades the prooxidant heme and generates molecules with antioxidative and anti-inflammatory properties, resulting in decreased oxidative stress and inflammation. Therefore, increasing HO-1 activity is an attractive option for therapy. Several HO-1 inducers have been identified and tested in animal models for preventing or alleviating AAA, IA, and SAH. However, clinical trials have shown conflicting results. Further research and the development of highly selective HO-1 regulators may be needed to prevent the initiation and progression of AAA, IA, or SAH.
Collapse
|
16
|
|
17
|
Mittal S, Iqubal MK, Iqbal B, Gupta MM, Ali J, Baboota S. A pervasive scientific overview on mangiferin in the prevention and treatment of various diseases with preclinical and clinical updates. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:9-21. [PMID: 32427121 DOI: 10.1515/jcim-2019-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Natural products are increasing used in preventing and treating various diseases. Mangiferin belongs to the xanthone family, and has potential antiangiogenic, anticancer, immunomodulatory and anti-inflammatory activity along with the antioxidant activity. It is also used in the treatment of cardiac problem, diabetes and neurodegenerative disease. Finding of various researchers proves that mangiferin has a broad spectrum therapeutic application. Motive of this review is to describe the various studies performed on mangiferin for its different pharmacological activities. It also discusses various challenges associated with mangiferin such as stability and bioavailability. Strategies and approaches to improve bioavailability of mangiferin have also been discussed. Both research and review articles were used to write the manuscript. They were collected from various search engines like Pub Med, Science Direct and Google Scholar, using keywords like mangiferin, polyphenol, bioavailability enhancement, solubility enhancement, and antioxidant. Mangiferin being a potent antioxidant is effective in the treatment of various diseases. With novel drug delivery approaches we can overcome poor solubility and bioavailability problem which eventually can result to better utilisation of mangiferin in treating a variety of diseases and make mangiferin a revolutionary drug.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Babar Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Science, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
18
|
El-Emam SZ, Soubh AA, Al-Mokaddem AK, Abo El-Ella DM. Geraniol activates Nrf-2/HO-1 signaling pathway mediating protection against oxidative stress-induced apoptosis in hepatic ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1849-1858. [PMID: 32417955 DOI: 10.1007/s00210-020-01887-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022]
Abstract
Geraniol (GOH) is a natural essential oil that possesses antioxidant, anti-inflammatory, and antiapoptotic properties by various signaling pathways. Liver ischemia-reperfusion injury (IRI) is a serious event that triggers liver dysfunction or even failure. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor, maintains cellular defense mechanism through antioxidant and anti-inflammatory properties. To detect GOH effect against liver IRI through the activation of the Nrf2/HO-1 antioxidant pathway, five groups of rats were randomized to normal, sham, IR, GOH, and GOH/IR. Blood samples and liver tissues were collected to measure various biochemical parameters related to liver function, and oxidative stress as well as inflammatory and apoptotic indicators besides liver tissue histopathology was evaluated by light microscopy. GOH induces activation of Nrf2 along with the upregulation of HO-1 expression. Also, the antioxidant activity of GOH was shown by the elevation of total antioxidant capacity and GSH levels, together with normalizing malondialdehyde. Regarding the anti-inflammatory effect of GOH, it suppresses the levels of TNF-α, iNOS, and COX-2. Additionally, the antiapoptotic effect of GOH, Bax, and caspase-3, 9 were reduced in liver tissue. GOH is a promising hepatoprotective agent in liver IRI through the activation of Nrf2/HO-1 antioxidant pathway.
Collapse
Affiliation(s)
- Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12566, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, ACU University, 4th Industrial Zone, Banks Complex, 6th of October City, Giza, 12451, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dina M Abo El-Ella
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12566, Egypt.
| |
Collapse
|
19
|
Feng Z, Lu X, Gan L, Zhang Q, Lin L. Xanthones, A Promising Anti-Inflammatory Scaffold: Structure, Activity, and Drug Likeness Analysis. Molecules 2020; 25:E598. [PMID: 32019180 PMCID: PMC7037265 DOI: 10.3390/molecules25030598] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Inflammation is the body's self-protective response to multiple stimulus, from external harmful substances to internal danger signals released after trauma or cell dysfunction. Many diseases are considered to be related to inflammation, such as cancer, metabolic disorders, aging, and neurodegenerative diseases. Current therapeutic approaches include mainly non-steroidal anti-inflammatory drugs and glucocorticoids, which are generally of limited effectiveness and severe side-effects. Thus, it is urgent to develop novel effective anti-inflammatory therapeutic agents. Xanthones, a unique scaffold with a 9H-Xanthen-9-one core structure, widely exist in natural sources. Till now, over 250 xanthones were isolated and identified in plants from the families Gentianaceae and Hypericaceae. Many xanthones have been disclosed with anti-inflammatory properties on different models, either in vitro or in vivo. Herein, we provide a comprehensive and up-to-date review of xanthones with anti-inflammatory properties, and analyzed their drug likeness, which might be potential therapeutic agents to fight against inflammation-related diseases.
Collapse
Affiliation(s)
- Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Z.F.); (Q.Z.)
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou 350300, China;
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China;
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Z.F.); (Q.Z.)
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Z.F.); (Q.Z.)
| |
Collapse
|
20
|
Yang F, Zhang Y, Tang Z, Shan Y, Wu X, Liu H. Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway. Life Sci 2019; 242:117151. [PMID: 31843526 DOI: 10.1016/j.lfs.2019.117151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
Abstract
AIMS Anaesthesia-related neurotoxicity in the developing brain is a controversial issue that has recently attracted much attention. Hemin plays a protective role in hypoxic and ischemic brain damage; however, its effects on sevoflurane-induced neurotoxicity remain unclear. Our aim was to investigate the mechanisms of sevoflurane neurotoxicity and potential neuroprotective roles of hemin upon sevoflurane exposure. MAIN METHODS Hippocampi were harvested 18 h after sevoflurane exposure. Haem oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), discs large MAGUK scaffold protein 4 (DLG4), phosphorylated Akt, Akt, cleaved caspase 3, and neuroglobin were detected by western blotting. A water maze test was used to assess learning and memory ability in P30 rats. KEY FINDINGS Sevoflurane inhalation increased cleaved caspase 3 levels. Hemin treatment enhanced the antioxidant defence response, protecting rats from oxidative stress injury. Hemin plays its neuroprotective role via phosphoinositide 3-kinase (PI3K)/Akt signalling. A single inhalation of sevoflurane did not affect DLG4 expression, while hemin treatment did. Platform crossing increased in rats treated with hemin as well, which may be related to increased DLG4. Neuroglobin expression was not affected, suggesting that it may act upstream of PI3K/Akt signalling. SIGNIFICANCE Our study demonstrates that hemin plays a protective role in anaesthesia-induced neurotoxicity by both inhibiting apoptosis via the PI3K/Akt pathway and increasing the expression of antioxidant enzymes, reducing oxidative damage. The results provide mechanistic insight into the effects of sevoflurane anaesthesia on the developing brain and suggest that hemin could help avoid these effects.
Collapse
Affiliation(s)
- Fan Yang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongfang Zhang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyin Tang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yangyang Shan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiuying Wu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Liu
- Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Liang J, Li F, Lin J, Song S, Liao X, Gao C, Yang B. Host-guest inclusion systems of mangiferin and polyamine-β-cyclodextrins: Preparation, characterization and anti-cancer activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Sha H, Zeng H, Zhao J, Jin H. Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. Eur J Pharmacol 2019; 859:172522. [PMID: 31276667 DOI: 10.1016/j.ejphar.2019.172522] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a temporary form of diabetes during pregnancy, which causes maternal diabetic symptoms and abnormal fetal development, and influence the health of maternal-child in clinical practice. Mangiferin is a bioactive ingredient with anti-inflammation, anti-oxidation and anti-endoplasmic reticulum stress activities. In current study, the effects of mangiferin on GDM were evaluated. We reported that mangiferin greatly improved altered glucose and lipid profile, insulin tolerance, and reproductive outcomes of the GDM mice. Mangiferin ameliorated placental oxidative stress, inflammation and ER stress in GDM mice. Therefore, we demonstrated that mangiferin displayed protective effects on gestational diabetes mellitus symptoms by suppressing placental oxidative stress, inflammation and endoplasmic reticulum stress in GDM mice.
Collapse
Affiliation(s)
- Han Sha
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Huirong Zeng
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Jie Zhao
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Haiying Jin
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China.
| |
Collapse
|
23
|
Protective anti-inflammatory activity of tovophyllin A against acute lung injury and its potential cytotoxicity to epithelial lung and breast carcinomas. Inflammopharmacology 2019; 28:153-163. [DOI: 10.1007/s10787-019-00609-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
|
24
|
Liu T, An XN, Liu DL, Wei YJ. A comparison of several second-order algorithms for simultaneous determination of neomangiferin and mangiferin with severe spectral overlapping in Anemarrhenae Rhizoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:172-178. [PMID: 30312844 DOI: 10.1016/j.saa.2018.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
This work presents a greener approach for simultaneous determination of neomangiferin and mangiferin, the major bioactive constituents with severe spectral overlapping in Anemarrhenae Rhizoma, combining the sensitivity of molecular fluorescence and the selectivity of chemometric multivariate calibration algorithms. In this study, we compared the analytical performance of two group chemometric algorithms including trilinear algorithms such as parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), self-weighted alternating trilinear decomposition (SWATLD) and alternating penalized trilinear decomposition (APTLD), and PLS-based methods such as unfolded partial least-squares or the multi-dimensional partial least-squares, both combined with residual bilinearization (U-PLS/RBL, N-PLS/RBL). The statistical parameters for the validation set of the second calibration were evaluated through the relative error of prediction (REP%), the average recovery (Rec%), and the root mean square error of prediction (RMSEP). Prediction results for the validation set by trilinear algorithms showed that the values were satisfactory for neomangiferin, and higher and not acceptable values for mangiferin, while U-PLS and N-PLS predictions were very successful for two analytes. Therefore, U- and N-PLS/RBL were chosen to determine neomangiferin and mangiferin in more complex real samples simultaneously, and U-PLS/RBL algorithm showed the best performance. The predicted concentrations by proposed methods were satisfactorily compared with those obtained using high performance liquid chromatography with ultraviolet detection.
Collapse
Affiliation(s)
- Tie Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiao-Na An
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - De-Long Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yong-Ju Wei
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
25
|
Upregulation of Heme Oxygenase-1 by Hemin Alleviates Sepsis-Induced Muscle Wasting in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8927104. [PMID: 30533176 PMCID: PMC6250022 DOI: 10.1155/2018/8927104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022]
Abstract
Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.
Collapse
|
26
|
α-Mangostin Alleviated Lipopolysaccharide Induced Acute Lung Injury in Rats by Suppressing NAMPT/NAD Controlled Inflammatory Reactions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5470187. [PMID: 30405740 PMCID: PMC6199890 DOI: 10.1155/2018/5470187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/08/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022]
Abstract
α-Mangostin (MAN) is a bioactive xanthone isolated from mangosteen. This study was designed to investigate its therapeutic effects on acute lung injury (ALI) and explore the underlying mechanisms of action. Rats from treatment groups were subject to oral administration of MAN for 3 consecutive days beforehand, and then ALI was induced in all the rats except for normal controls via an intraperitoneal injection with lipopolysaccharide. The severity of disease was evaluated by histological examination and hematological analysis. Protein expressions in tissues and cells were examined with immunohistochemical and immunoblotting methods, respectively. The levels of cytokines and nicotinamide adenine dinucleotide (NAD) were determined using ELISA and colorimetric kits, respectively. It was found that MAN treatment significantly improved histological conditions, reduced leucocytes counts, relieved oxidative stress, and declined TNF-α levels in ALI rats. Meanwhile, MAN treatment decreased expressions of nicotinamide phosphoribosyltransferase (NAMPT) and Sirt1 both in vivo and in vitro, which was accompanied with a synchronized decline of NAD and TNF-α. Immunoblotting assay further showed that MAN downregulated HMGB1, TLR4, and p-p65 in RAW 264.7 cells. MAN induced declines of both HMGB1/TLR4/p-p65 and TNF-α were substantially reversed by cotreatment with nicotinamide mononucleotide or NAD. These results suggest that downregulation of NAMPT/NAD by MAN treatments contributes to the alleviation of TLR4/NF-κB-mediated inflammations in macrophage, which is essential for amelioration of ALI in rats.
Collapse
|
27
|
Wisutthathum S, Kamkaew N, Inchan A, Chatturong U, Paracha TU, Ingkaninan K, Wongwad E, Chootip K. Extract of Aquilaria crassna leaves and mangiferin are vasodilators while showing no cytotoxicity. J Tradit Complement Med 2018; 9:237-242. [PMID: 31453117 PMCID: PMC6701956 DOI: 10.1016/j.jtcme.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/19/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
The leaves of Aquilaria spp. promote “physiological balance”, and are “cardiotonic and provide blood nourishment”. In Asia, these leaves are increasingly consumed as tea and claimed to provide benefits to cardiovascular function, albeit without any scientific proof. Therefore, this study sought to evaluate the action of Aquilaria crassna leaf aqueous extract (AE) on vascular function and vascular smooth muscle cytotoxicity. AE and a main constituent, mangiferin were investigated for their vasorelaxation of rat mesenteric arteries and aortae in vitro. Acute cytotoxicity of AE (0.1–1000 μg/ml) and mangiferin (0.1–100 μM) on rat enzymatically isolated vascular smooth muscle cells was assayed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. AE dilated rat mesenteric arteries (EC50∼107 μg/ml, Emax∼95%) more than aorta (EC50∼265 μg/ml, Emax∼76%, p < 0.05). AE-induced vasodilation in mesenteric artery was reduced by endothelial removal (EC50∼202 μg/ml, p < 0.05), incubation with endothelial nitric oxide synthase (eNOS) (100 μM, L-NAME) (EC50∼309 μg/ml, p < 0.05), and partly reduced by L-type Ca2+ channel blockade at higher concentrations. Likewise, mangiferin (1–100 μM) dilated the mesenteric artery more potently than the aorta. However, its maximum relaxation was less than with AE (41% in the mesenteric artery and <10% in the aorta). Isolated vascular smooth muscle cells incubated in AE or mangiferin for 1 h showed no cytotoxicity. Thus, AE is a vasorelaxant while being free of acute cytotoxicity towards vascular smooth muscle, thus potentially ameliorating human vascular dysfunction.
Collapse
Affiliation(s)
- Sutthinee Wisutthathum
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Natakorn Kamkaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Anjaree Inchan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Usana Chatturong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Tamkeen Urooj Paracha
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Eakkaluk Wongwad
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
28
|
Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6403861. [PMID: 29682161 PMCID: PMC5848134 DOI: 10.1155/2018/6403861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/20/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
Oxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-κB, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-κB. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
|
29
|
Wang Y, Liu Y, Cao Q, Shi X, Lu H, Gao S, Yang R. Metabolomic analysis for the protective effects of mangiferin on sepsis-induced lung injury in mice. Biomed Chromatogr 2018; 32:e4208. [PMID: 29431198 DOI: 10.1002/bmc.4208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the efficacy of mangiferin, including its known antioxidant and anti-inflammatory effects on sepsis-induced lung injury induced by a classical cecal ligation and puncture (CLP) models in mouse using a metabolomics approach. A total of 24 mice were randomly divided into four groups: the sham group was given saline before sham operation. The CLP group received the CLP operation only. HMF and LMF groups were given mangiferin treatment of high dose and low dose of mangiferin, respectively, before the CLP operation. One week after treatment, the mice were sacrificed and their lungs were collected for metabolomics analysis. We developed ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to perform lung metabolic profiling analysis. With the methods of principal component analysis and partial least squares discriminant analysis, 58 potential metabolites associated with amino acid metabolism, purine metabolism, lipid metabolism and energy regulation were observed to be increased or reduced in HMF and LMF groups compared with the CLP group. Conclusively, our results suggest that mangiferin plays a protective role in the moderation of sepsis-induced lung injury through reducing oxidative stress, regulating lipid metabolism and energy biosynthesis.
Collapse
Affiliation(s)
- Yilin Wang
- Student Unit, Navy Medical University, Shanghai, China
| | - Yang Liu
- Student Unit, Navy Medical University, Shanghai, China
| | - Qiqi Cao
- Student Unit, Navy Medical University, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongtao Lu
- Department of Navy Aeromedicine, Navy Medical University, Shanghai, China
| | - Songyan Gao
- School of Pharmacy, Navy Medical University, Shanghai, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
30
|
Xu W, Deng J, Qian Y, Hou XT, Zhu Z, Zhao M, Shang E, Qian D, Zeng H, Pang H, Duan J. Simultaneous determination of kaempferol, quercetin, mangiferin, gallic acid,p-hydroxybenzoic acid and chlorpheniramine maleate in rat plasma after oral administration of Mang-Guo-Zhi-Ke tablets by UHPLC-MS/MS and its application to pharmacokinetics. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Weijie Xu
- College of Pharmacy; Guangxi University of Chinese Medicine; Nanning China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Jiagang Deng
- College of Pharmacy; Guangxi University of Chinese Medicine; Nanning China
| | - Yiyun Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Xiao-Tao Hou
- College of Pharmacy; Guangxi University of Chinese Medicine; Nanning China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Huiting Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Hanqing Pang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|
31
|
Ma WW, Zhao L, Yuan LH, Yu HL, Wang H, Gong XY, Wei F, Xiao R. Elaidic acid induces cell apoptosis through induction of ROS accumulation and endoplasmic reticulum stress in SH‑SY5Y cells. Mol Med Rep 2017; 16:9337-9346. [PMID: 29152653 PMCID: PMC5779995 DOI: 10.3892/mmr.2017.7830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Elaidic acid, which is a major trans fatty acid, has been reported to be involved in neurotoxicity; however, the underlying molecular mechanisms underlying its neurotoxic effects remain largely unknown. Therefore, the present study aimed to investigate the potential mechanisms underlying elaidic acid‑induced neuronal damage in vitro. The SH‑SY5Y neuroblastoma cell line was used as a model in the present study. Following treatment of cells with various concentrations of elaidic acid or with vehicle for 24 h, cell viability was measured using the MTT assay. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) release were measured using flow cytometry. Cell apoptosis was measured by Annexin V‑fluorescein isothiocyanate/propidium iodide double staining, and cellular redox status was determined using ELISA analysis. Furthermore, western blotting was used to detect the protein expression levels of factors associated with oxidative damage and components of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) signaling pathways. The results demonstrated that elaidic acid treatment inhibited cell viability, elevated cell apoptosis and resulted in a loss of MMP. In addition, elaidic acid induced marked alterations in cellular redox status. Treatment with high doses of elaidic acid treatment also enhanced the release of ROS, and upregulated lipid peroxide and malondialdehyde levels; however, it reduced superoxide dismutase and glutathione peroxidase activities. Furthermore, elaidic acid resulted in upregulation of nuclear factor erythroid 2‑related factor 2 and downregulation of heme oxygenase 1, which are two key antioxidative factors. Elaidic acid treatment also induced or inhibited the expression of numerous ER stress/UPR‑associated molecules. It induced glucose‑regulated protein 78 (GRP78) expression, whereas the expression levels of activating transcription factor 4 (ATF4) and CCAAT/enhancer‑binding protein homologous protein (CHOP) were upregulated and then downregulated following treatment with various doses of elaidic acid. These results indicated that elaidic acid inhibited SH‑SY5Y cell growth and induced apoptosis by enhancing oxidative stress and activating the ER stress/UPR signaling pathway and the GRP78/ATF4/CHOP pathway.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lin-Hong Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Huan-Ling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Hui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Xin-Yuan Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Rong Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
32
|
El-Sayyad SM, Soubh AA, Awad AS, El-Abhar HS. Mangiferin protects against intestinal ischemia/reperfusion-induced liver injury: Involvement of PPAR-γ, GSK-3β and Wnt/β-catenin pathway. Eur J Pharmacol 2017; 809:80-86. [PMID: 28506911 DOI: 10.1016/j.ejphar.2017.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
AIM Mangiferin (MF), a xanthonoid from Mangifera indica, possesses anti-inflammatory, immunomodulatory, and potent antioxidant effects; however, its protective effect against mesenteric ischemia/reperfusion (I/R)-induced liver injury has not been fully clarified. The study was designed to assess the possible mechanism of action of MF against mesenteric I/R model. MAIN METHODS Male Wister rats were treated with MF (20mg/kg, i.p) or the vehicle for 3 days before I/R, which was induced by clamping the superior mesenteric artery for 30min followed by declamping for 60min. KEY FINDINGS The mechanistic studies revealed that MF protected the 2 organs studied, viz., liver and intestine partly via increasing the content of β-catenin and PPAR-γ along with decreasing that of GSK-3β and the phosphorylated NF-қB-p65. MF antioxidant effect was evidenced by increasing contents of total antioxidant capacity and GST, besides normalizing that of MDA. Regarding the anti-inflammatory effect, MF reduced IL-1β and IL-6, effects that were mirrored on the tissue content of MPO. Moreover, MF possessed anti-apoptotic character evidenced by elevating Bcl-2 content and reducing that of caspase-3. In the serum, intestinal I/R increased the activity of ALT, AST, and creatine kinase. SIGNIFICANCE The intimated protective mechanisms of MF against mesenteric I/R are mediated, partially, by modulation of oxidative stress, inflammation, and apoptosis possibly via the involvement of Wnt/β-catenin/NF-қβ/ PPAR-γ signaling pathways.
Collapse
Affiliation(s)
- Shorouk M El-Sayyad
- Department of Pharmacology & Toxicology, October 6 University,12585 Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt.
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
33
|
Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 2017; 16:84. [PMID: 28464819 PMCID: PMC5414237 DOI: 10.1186/s12944-017-0449-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The current review article is an attempt to explain the therapeutic potential of mangiferin, a bioactive compound of the mango, against lifestyle-related disorders. Mangiferin (2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one) can be isolated from higher plants as well as the mango fruit and their byproducts (i.e. peel, seed, and kernel). It possesses several health endorsing properties such as antioxidant, antimicrobial, antidiabetic, antiallergic, anticancer, hypocholesterolemic, and immunomodulatory. It suppresses the activation of peroxisome proliferator activated receptor isoforms by changing the transcription process. Mangiferin protects against different human cancers, including lung, colon, breast, and neuronal cancers, through the suppression of tumor necrosis factor α expression, inducible nitric oxide synthase potential, and proliferation and induction of apoptosis. It also protects against neural and breast cancers by suppressing the expression of matrix metalloproteinase (MMP)-9 and MMP-7 and inhibiting enzymatic activity, metastatic potential, and activation of the β-catenin pathway. It has the capacity to block lipid peroxidation, in order to provide a shielding effect against physiological threats. Additionally, mangiferin enhances the capacity of the monocyte-macrophage system and possesses antibacterial activity against gram-positive and gram-negative bacteria. This review summarizes the literature pertaining to mangiferin and its associated health claims.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan.,National institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajid Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 36000, Pakistan. .,School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of South Korea.
| | - Masood Sadiq Butt
- National institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Joong-Ho Kwon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of South Korea
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, 36000, Pakistan
| | | |
Collapse
|
34
|
Giovannini P, Howes MJR. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:240-256. [PMID: 28179114 DOI: 10.1016/j.jep.2017.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Every year between 1.2 and 5.5 million people worldwide are victims of snakebites, with about 400,000 left permanently injured. In Central America an estimated 5500 snakebite cases are reported by health centres, but this is likely to be an underestimate due to unreported cases in rural regions. The aim of this study is to review the medicinal plants used traditionally to treat snakebites in seven Central American countries: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama. MATERIALS AND METHODS A literature search was performed on published primary data on medicinal plants of Central America and those specifically pertaining to use against snakebites. Plant use reports for traditional snakebite remedies identified in primary sources were extracted and entered in a database, with data analysed in terms of the most frequent numbers of use reports. The scientific evidence that might support the local uses of the most frequently reported species was also examined. RESULTS A total of 260 independent plant use reports were recorded in the 34 sources included in this review, encompassing 208 species used to treat snakebite in Central America. Only nine species were reported in at least three studies: Cissampelos pareira L., Piper amalago L., Aristolochia trilobata L., Sansevieria hyacinthoides (L.) Druce, Strychnos panamensis Seem., Dorstenia contrajerva L., Scoparia dulcis L., Hamelia patens Jacq., and Simaba cedron Planch. Genera with the highest number of species used to treat snakebite were Piper, Aristolochia, Hamelia, Ipomoea, Passiflora and Peperomia. The extent of the scientific evidence available to understand any pharmacological basis for their use against snakebites varied between different plant species. CONCLUSION At least 208 plant species are traditionally used to treat snakebite in Central America but there is a lack of clinical research to evaluate their efficacy and safety. Available pharmacological data suggest different plant species may target different symptoms of snakebites, such as pain or anxiety, although more studies are needed to further evaluate the scientific basis for their use.
Collapse
Affiliation(s)
- Peter Giovannini
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Melanie-Jayne R Howes
- Natural Capital and Plant Health Department, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
35
|
Bulugonda RK, Kumar KA, Gangappa D, Beeda H, Philip GH, Muralidhara Rao D, Faisal SM. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Sci Rep 2017; 7:42683. [PMID: 28218280 PMCID: PMC5316935 DOI: 10.1038/srep42683] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have demonstrated the role of phyto-constituents in modulating inflammatory responses. Mangiferin isolated from Mangifera indica is known to induce potent anti-oxidative, anti-diabetic and anti-inflammatory activity. However, the molecular mechanism of its anti-inflammatory activity is not properly understood. In this study we have isolated Mangiferin from the tubers of Pueraria tuberosa (PT-Mangiferin) and analysed the mechanism of its potent anti-inflammatory effects in LPS stimulated RAW 264.7 mouse macrophage cell line and in a carrageenan induced air pouch model. PT-Mangiferin was non-toxic to primary cells but showed significant toxicity and apoptotic effect on cancerous cells. It significantly reduced the production of pro-inflammatory mediators (COX-2, iNOS and TNF-α) in LPS stimulated RAW 264.7 cells. Further, it has also reduced the generation of ROS and inhibited LPS induced NF-kB translocation in these cells. Additionally, PT-Mangiferin significantly reduced inflammation in a mouse air pouch model by inhibiting the infiltration of monocytes and neutrophils and reducing the production of cytokines. These effects were mediated via inactivation of NLRP3 inflammasome complex and its downstream signalling molecules. Taken together these results suggest that PT-Mangiferin is potent anti-inflammatory compound that reduces inflammation and holds promise in development of herbal based anti-inflammatory therapeutics in future.
Collapse
Affiliation(s)
| | - Kotha Anil Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - D Gangappa
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Harshavardhan Beeda
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, India
| | | | | | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
36
|
Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways. Int Immunopharmacol 2016; 43:85-90. [PMID: 27984712 DOI: 10.1016/j.intimp.2016.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
During the past era, small molecules derived from various plants have attracted extensive attention for their versatile medicinal benefits. Among these, one organic molecule called mangiferin from certain plant species including mangoes and honey bush tea is widely used in treating inflammation. In this study, a LPS-induced mastitis model in mouse is established to investigate the anti-inflammatory effects and mechanism of mangiferin. The result shows that mangiferin significantly alleviates LPS-induced histopathology, meanwhile, also decreases LPS-induced MPO activity. Furthermore, mangiferin treatment remarkably impeded the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, mangiferin was found to inhibit LPS-induced NF-ĸB and NLRP3 inflammasome activation. In conclusion, these results suggested that LPS-induced mastitis can be abated by mangiferin through inhibiting NF-ĸB and NLRP3 signaling pathways.
Collapse
|
37
|
Extraction of Mangiferin and Chemical Characterization and Sensorial Analysis of Teas from Mangifera indica L. Leaves of the Ubá Variety. BEVERAGES 2016. [DOI: 10.3390/beverages2040033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Saha S, Sadhukhan P, Sil PC. Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. Biofactors 2016; 42:459-474. [PMID: 27219011 DOI: 10.1002/biof.1292] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023]
Abstract
Over the last era, small molecules sourced from different plants have gained attention for their varied and long-term medicinal benefits. Their advantageous therapeutic effects in diverse pathological complications lead researchers to give an ever-increasing emphasis on them and discover their novel therapeutic potentials. Among these, the heat stable, xanthonoid group of organic molecules has gained special importance with distinctive regards to the bioactive molecule mangiferin due to its solubility in water. Mangiferin, a yellow polyphenol having C-glycosyl xanthone structure, is widely present in different edible sources like mango, and possesses numerous biological activities. Extensive research with this molecule shows its antioxidant, anti-inflammatory, antidiabetic, anticancer, antimicrobial, analgesic, and immunomodulatory properties. Thus, it provides protection against a wide range of physiological disorders. The C-glucosyl linkage and polyhydroxy groups in mangiferin's structure contribute essentially to its free radical-scavenging activity. Moreover, its ability in regulating various transcription factors like NF-κB, Nrf-2, etc. and modulating the expression of different proinflammatory signaling intermediates like tumor necrosis factor-α, COX-2, etc. contribute to its anti-inflammatory, anticancer, and antidiabetic potentials. In this comprehensive article, information has been provided about the sources, chemical structure, metabolism, and different biological activities of mangiferin with special emphasis on the underlying cellular signal transduction pathways. Insights into an in-depth assessment of mangiferin's anti-inflammatory therapeutic potential have also been discussed in detail. On an overall perspective, this review aims to stage mangiferin's diversified therapeutic applications and its emerging possibility as a promising drug in future based on its anti-inflammatory property. © 2016 BioFactors, 42(5):459-474, 2016.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
39
|
Wei Z, Yan L, Chen Y, Bao C, Deng J, Deng J. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression. Mol Med Rep 2016; 14:1091-8. [PMID: 27277156 PMCID: PMC4940072 DOI: 10.3892/mmr.2016.5352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.
Collapse
Affiliation(s)
- Zhiquan Wei
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Li Yan
- Laboratory of Basis and Application Research of Zhuang Medicine Formulas, Zhuang Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Yixin Chen
- Guangxi Key Laboratory of Pharmacodynamics Studies of Traditional Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Chuanhong Bao
- Department of Pharmacy, Ruikang Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530012, P.R. China
| | - Jing Deng
- Dana‑Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jiagang Deng
- Guangxi Key Laboratory of Pharmacodynamics Studies of Traditional Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
40
|
Protective effect of polyphenols in an inflammatory process associated with experimental pulmonary fibrosis in mice. Br J Nutr 2016; 114:853-65. [PMID: 26334388 DOI: 10.1017/s0007114515002597] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyphenols have been described to have a wide range of biological activities, and many reports, published during recent years, have highlighted the beneficial effects of phenolic compounds, illustrating their promising role as therapeutic tools in several acute and chronic disorders. The purpose of study was to evaluate, in an already-assessed model of lung injury caused by bleomycin (BLM) administration, the role of resveratrol and quercetin, as well as to explore the potential beneficial properties of a mango leaf extract, rich in mangiferin, and a grape leaf extract, rich in dihydroquercetin (DHQ), on the same model. Mice were subjected to intra-tracheal administration of BLM, and polyphenols were administered by oral route immediately after BLM instillation and daily for 7 d. Treatment with resveratrol, mangiferin, quercetin and DHQ inhibited oedema formation and body weight loss, as well as ameliorated polymorphonuclear infiltration into the lung tissue and reduced the number of inflammatory cells in bronchoalveolar lavage fluid. Moreover, polyphenols suppressed inducible nitric oxide synthase expression, and prevented oxidative and nitroxidative lung injury, as shown by the reduced nitrotyrosine and poly (ADP-ribose) polymerase levels. The degree of apoptosis, as evaluated by Bid and Bcl-2 balance, was also suppressed after polyphenol treatment. Finally, these natural products down-regulated cyclo-oxygenase-2, extracellular signal-regulated kinase phosphorylated expression and reduced NF-κBp65 translocation. Our findings confirmed the anti-inflammatory effects of resveratrol and quercetin in BLM-induced lung damage, and highlight, for the first time, the protective properties of exogenous administration of mangiferin and DHQ on experimental pulmonary fibrosis.
Collapse
|
41
|
Qiu X, Zhao JL, Hao C, Yuan C, Tian N, Xu ZS, Zou RM. Simultaneous determination of mangiferin and neomangiferin in rat plasma by UPLC–MS/MS and its application for pharmacokinetic study. J Pharm Biomed Anal 2016; 124:138-142. [DOI: 10.1016/j.jpba.2016.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 01/15/2023]
|
42
|
Zhou XL, Huang L, Cao J. Embelin Reduces Systemic Inflammation and Ameliorates Organ Injuries in Septic Rats Through Downregulating STAT3 and NF-κB Pathways. Inflammation 2016; 38:1556-62. [PMID: 25682469 DOI: 10.1007/s10753-015-0130-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Current evidence shows that the majority of the damage induced during sepsis is pursuant to induction and overproduction of endogenous cytokines. Embelin has been reported to suppress cytokine expressions in inflammatory disorders. The present study was designed to investigate the effects of embelin on cecal and ligation and puncture (CLP)-induced rat sepsis. Single-dose administration of embelin 1 h after surgery significantly improved survival of rats with CLP-induced sepsis. In addition, embelin treatment reduced the serum levels of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 and decreased organ inflammation and injuries. Moreover, embelin suppressed the activation of p65 subunit of nuclear factor-kappa B (NF-κB) and signal transducers and activators of transcription 3 (STAT3). Collectively, these results indicated that embelin ameliorates sepsis in rats through suppressing STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Xian-Long Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | | | | |
Collapse
|
43
|
Hou J, Zheng D, Fung G, Deng H, Chen L, Liang J, Jiang Y, Hu Y. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Can J Physiol Pharmacol 2016; 94:332-40. [PMID: 26751764 DOI: 10.1139/cjpp-2015-0073] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Pharmacy, Chengdu Military General Hospital, Chengdu, China
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, Jinan Military General Hospital, Jinan, China
| | - Gabriel Fung
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Lin Chen
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiali Liang
- Department of Cardiovascular Surgery, Jinan Military General Hospital, Jinan, China
| | - Yan Jiang
- Department of Pharmacy, Chengdu Military General Hospital, Chengdu, China
| | - Yonghe Hu
- Department of Traditional Chinese Medicine, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
44
|
Yang Z, Weian C, Susu H, Hanmin W. Protective effects of mangiferin on cerebral ischemia–reperfusion injury and its mechanisms. Eur J Pharmacol 2016; 771:145-51. [DOI: 10.1016/j.ejphar.2015.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
|
45
|
Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation. Mucosal Immunol 2016; 9:98-111. [PMID: 25943274 DOI: 10.1038/mi.2015.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/01/2015] [Indexed: 02/04/2023]
Abstract
Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.
Collapse
|
46
|
Fu Y, Liu H, Song C, Zhang F, Liu Y, Wu J, Wen X, Liang C, Ma K, Li L, Zhang X, Shao X, Sun Y, Du Y, Song Y. Mangiferin regulates cognitive deficits and heme oxygenase-1 induced by lipopolysaccharide in mice. Int Immunopharmacol 2015; 29:950-956. [DOI: 10.1016/j.intimp.2015.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/04/2023]
|
47
|
Wang J, Nie Y, Li Y, Hou Y, Zhao W, Deng J, Wang PG, Bai G. Identification of target proteins of mangiferin in mice with acute lung injury using functionalized magnetic microspheres based on click chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10013-10021. [PMID: 26488336 DOI: 10.1021/acs.jafc.5b04439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural C-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100871, People's Republic of China
| | - Yan Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Yunjuan Li
- Guangxi University of Chinese Medicine , Nanning, Guangxi 530001, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100871, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Jiagang Deng
- Guangxi University of Chinese Medicine , Nanning, Guangxi 530001, People's Republic of China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
48
|
Kim M, Park SY, Jin ML, Park G, Son HJ. Cucurbitacin B inhibits immunomodulatory function and the inflammatory response in macrophages. Immunopharmacol Immunotoxicol 2015; 37:473-80. [DOI: 10.3109/08923973.2015.1085065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
LUO YANG, FU CHANGFENG, WANG ZHENYU, ZHANG ZHUO, WANG HONGXIA, LIU YI. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway. Mol Med Rep 2015; 12:7132-8. [DOI: 10.3892/mmr.2015.4274] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
|
50
|
Mahmoud-Awny M, Attia AS, Abd-Ellah MF, El-Abhar HS. Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways. PLoS One 2015. [PMID: 26196679 PMCID: PMC4509761 DOI: 10.1371/journal.pone.0132497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mangiferin (MF), a xanthonoid from Mangifera indica, has been proved to have antisecretory and antioxidant gastroprotective effects against different gastric ulcer models; however, its molecular mechanism has not been previously elucidated. Therefore, the aim of this study was to test its modulatory effect on several signaling pathways using the ischemia/reperfusion model for the first time. Animals were treated with MF, omeprazole (OMP), and the vehicle. The mechanistic studies revealed that MF mediated its gastroprotective effect partly via inducing the expression of Nrf2, HO-1 and PPAR-γ along with downregulating that of NF-κB. Surprisingly, the effect of MF, especially the high dose, exceeded that mediated by OMP except for Nrf2. The molecular results were reflected on the biomarkers measured, where the antioxidant effect of MF was manifested by increasing total antioxidant capacity and glutathione, besides normalizing malondialdehyde level. Additionally, MF decreased the I/R-induced nitric oxide elevation, an effect that was better than that of OMP. In the serum, MF, dose dependently, enhanced endothelial nitric oxide synthase, while reduced the inducible isoform. Regarding the anti-inflammatory effect of MF, it reduced serum level of IL-1β and sE-selectin, effects that were mirrored on the tissue level of myeloperoxidase, the neutrophil infiltration marker. In addition, MF possessed an antiapoptotic character evidenced by elevating Bcl-2 level and reducing that of caspase-3 in a dose related order. As a conclusion, the intimated gastroprotective mechanisms of MF are mediated, partially, by modulation of oxidative stress, inflammation and apoptosis possibly via the Nrf2/HO-1, PPAR-γ/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Magdy Mahmoud-Awny
- Department of Pharmacology & Toxicology, October University, Cairo, Egypt
| | - Ahmed S. Attia
- Department of Microbiology & Immunologyology, Cairo University, Cairo, Egypt
| | | | - Hanan Salah El-Abhar
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
- * E-mail:
| |
Collapse
|