1
|
Chen Y, Chen YY, Chien KL, Lin YJ, Chen FY, Hsieh YC, Lip GYH, Chen SA. Long-term trajectories of apolipoprotein A1 and major adverse cardiovascular events and mortality in a community cohort. Lipids Health Dis 2025; 24:137. [PMID: 40211283 PMCID: PMC11983767 DOI: 10.1186/s12944-025-02552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a major component of high-density lipoprotein cholesterol and plays a critical role in reverse cholesterol transport. Dynamic changes in ApoA1 levels may be associated with major adverse cardiovascular events. This study aimed to evaluate the impact of ApoA1 trajectories over three early assessments. METHODS Participants in the Chin-Shan Community Cardiovascular Cohort with dyslipidemia and receiving three early ApoA1 assessments were enrolled. Group-based multivariate trajectory modeling was used to classify participants into distinct trajectories after multivariable adjustment. The follow-up duration was from April 1990 to August 2022, and the long-term outcomes of major adverse cardiovascular events (MACE) and death outcomes were evaluated. RESULTS A total of 1,080 participants were included (median [interquartile range] age 66.14 [57.93-75.04] years, 43.2% males). Participants were classified into four ApoA1 trajectories: Trajectory 1 (low-level persistence pattern); Trajectory 2 (fall-then-rise pattern); Trajectory 3 (rise-then-fall pattern); and Trajectory 4 (elevated stable pattern). The cumulative incidence of MACE was ranked as Trajectory 4 (7.9%) < Trajectory 2 (9.3%) < Trajectory 3 (9.4%) < Trajectory 1 (12.7%). Comparing to Trajectory 4, both Trajectory 1 and Trajectory 2 had significantly higher risks of MACE (Trajectory 1: hazard ratio [HR] = 2.06, 95% confidence interval [CI] 1.10-3.86; Trajectory 2: HR = 2.38, 95% CI 1.03-5.48). For cardiovascular death, similar results were present. There were no significant differences in composite outcome, all-cause death, non-cardiovascular death across ApoA1 trajectories. CONCLUSION The trajectory changes of ApoAI levels significantly influences MACE risk during long-term follow-up, particularly in the low-stable and J-shaped trajectories. Dynamic monitoring of ApoAI may serve as a valuable tool for early risk stratification in high-risk populations, facilitating more individualised interventions.
Collapse
Affiliation(s)
- Yang Chen
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Yun-Yu Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan.
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fang-Yi Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Hsieh
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Medical University of Bialystok, Bialystok, Poland
| | - Shih-Ann Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Herrmann W, Herrmann M. n-3 fatty acids and the risk of atrial fibrillation, review. Diagnosis (Berl) 2024; 11:345-352. [PMID: 38716687 DOI: 10.1515/dx-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 11/07/2024]
Abstract
Atrial fibrillation (AF) is the most frequent type of cardiac arrhythmia that affects over six million individuals in Europe. The incidence and prevalence of AF rises with age, and often occurs after cardiac surgery. Other risk factors correlated with AF comprise high blood pressure, diabetes mellitus, left atrial enlargement, ischemic heart disease, and congestive heart failure. Considering the high prevalence of AF in aging societies, strategies to prevent serious complications, such as stroke or heart failure, are important because they are correlated with high morbidity and mortality. The supplementation of sea-derived n-3 polyunsaturated fatty acids (PUFA) is widely discussed in this context, but the results of experimental and observational studies are in contrast to randomized placebo-controlled intervention trials (RCTs). Specifically, larger placebo-controlled n-3 PUFA supplementation studies with long follow-up showed a dose-dependent rise in incident AF. Daily n-3 PUFA doses of ≥1 g/d are correlated with a 50 % increase in AF risk, whereas a daily intake of <1 g/d causes AF in only 12 %. Individuals with a high cardiovascular risk (CVD) risk and high plasma-triglycerides seem particularly prone to develop AF upon n-3 PUFA supplementation. Therefore, we should exercise caution with n-3 PUFA supplementation especially in patients with higher age, CVD, hypertriglyceridemia or diabetes. In summary, existing data argue against the additive intake of n-3 PUFA for preventative purposes because of an incremental AF risk and lacking CVD benefits. However, more clinical studies are required to disentangle the discrepancy between n-3 PUFA RCTs and observational studies showing a lower CVD risk in individuals who regularly consume n-3 PUFA-rich fish.
Collapse
Affiliation(s)
| | - Markus Herrmann
- Medical School, Saarland University, 66424 Homburg, Saar, Germany
- Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| |
Collapse
|
3
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
4
|
Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: a review of the state-of-the-art. Expert Rev Clin Pharmacol 2020; 14:79-93. [PMID: 33306922 DOI: 10.1080/17512433.2021.1863784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION : An epidemiological study of Greenlandic Inuit suggested the importance of omega-3 polyunsaturated fatty acids (PUFAs) in preventing ischemic heart disease. After this landmark study, large-scale epidemiological studies have examined the benefits of omega-3 PUFAs in the prevention of cardiovascular diseases. AREAS COVERED : This article reviews studies on omega-3 PUFAs, and identifies issues relevant to cardiovascular risk. EXPERT OPINION : Recent studies have focused on the anti-inflammatory effects of omega-3 PUFAs and specialized pro-resolving mediators. High-purity eicosapentaenoic acid (EPA) ethyl ester and EPA/docosahexaenoic acid (DHA) preparations have been developed primarily for the treatment of hypertriglyceridemia. Various trials on the cardiovascular protective effects of omega-3 PUFAs have been reported, but the results have not been consistent. Some issues of the trials have been suggested, such as using low-dose omega-3 PUFAs and not including hypertriglyceridemia in subject selection criteria. REDUCE-IT study that used a high dose of high-purity EPA preparation showed a relative reduction in cardiovascular events, but, the STRENGTH study that used a high dose of EPA/DHA preparation did not support this benefit. This article reviews the roles of omega-3 PUFAs in cardiovascular diseases, including progress in understanding the molecular mechanisms and recent large-scale clinical trials.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center , Chiba, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center , Chiba, Japan
| |
Collapse
|
5
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Watanabe Y, Tatsuno I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J Atheroscler Thromb 2020; 27:183-198. [PMID: 31582621 PMCID: PMC7113138 DOI: 10.5551/jat.50658] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
An epidemiological study of Greenlandic Inuit suggested that fish oil, or omega-3 polyunsaturated fatty acids (PUFA), was important in preventing atherosclerotic disease. After this landmark study, many large-scale epidemiological studies and meta-analyses have examined the health benefits of omega-3 PUFA as part of a fatty acid-rich diet to demonstrate its beneficial roles in the prevention of cardiovascular diseases. Recent research has also focused attention on the anti-inflammatory effects of omega-3 PUFA and on specialized pro-resolving mediators. Findings of these studies have led to the development of omega-3 PUFA preparations for the treatment of dyslipidemia, including a highly purified eicosapentaenoic acid (EPA)-ethyl ester product (Epadel®) in Japan and an EPA/docosahexaenoic acid (DHA) preparation (Lotriga®) in the United States and Europe. Although various large-scale clinical trials on the cardiovascular preventive effect of omega-3 PUFA were conducted and reported, the results were not always consistent. The issues of not targeting subjects with hypertriglyceridemia and using low dose of omega-3 PUFA have been suggested to contribute to the failure of demonstrating the preventive effect of omega-3 PUFA in these clinical trials. Taking into account the above issues, the REDUCE-IT trial evaluated a highly purified EPA preparation at a high dose of 4 g/day in patients with hypertriglyceridemia and high cardiovascular risk, and demonstrated an extraordinary outcome of 25% relative reduction in cardiovascular events. This article reviews studies on omega-3 fatty acids during the last 50 years, including the progress in elucidating molecular mechanisms and recent large-scale clinical studies.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| |
Collapse
|
7
|
Stupin M, Kibel A, Stupin A, Selthofer-Relatić K, Matić A, Mihalj M, Mihaljević Z, Jukić I, Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front Physiol 2019; 10:1129. [PMID: 31543828 PMCID: PMC6728652 DOI: 10.3389/fphys.2019.01129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity has a beneficial effect on systemic hemodynamics, physical strength, and cardiac function in cardiovascular (CV) patients. Potential beneficial effects of dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on hemorheology, vascular function, inflammation and potential to improve physical performance as well as other CV parameters are currently investigated. Recent meta-analysis suggests no effect of n-3 PUFA supplementation on CV function and outcomes of CV diseases. On the other hand, some studies support beneficial effects of n-3 PUFAs dietary intake on CV and muscular system, as well as on immune responses in healthy and in CV patients. Furthermore, the interaction of exercise and dietary n-3 PUFA intake is understudied. Supplementation of n-3 PUFAs has been shown to have antithrombotic effects (by decreasing blood viscosity, decreasing coagulation factor and PAI-1 levels and platelet aggregation/reactivity, enhancing fibrinolysis, but without effects on erythrocyte deformability). They decrease inflammation by decreasing IL-6, MCP-1, TNFα and hsCRP levels, expression of endothelial cell adhesion molecules and significantly affect blood composition of fatty acids. Treatment with n-3 PUFAs enhances brachial artery blood flow and conductance during exercise and enhances microvascular post-occlusive hyperemic response in healthy humans, however, the effects are unknown in cardiovascular patients. Supplementation of n-3 PUFAs may improve anaerobic endurance and may modulate oxygen consumption during intense exercise, may increase metabolic capacity, enhance endurance capacity delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function in humans and animal models. In addition, n-3 PUFAs have anti-inflammatory and anti-nociceptive effects and may attenuate delayed-onset muscle soreness and muscle stiffness, and preserve joint mobility. On the other hand, effects of n-3 PUFAs were variably observed in men and women and they vary depending on dietary protocol, type of supplementation and type of sports activity undertaken, both in healthy and cardiovascular patients. In this review we will discuss the physiological effects of n-3 PUFA intake and exercise on hemorheology, microvascular function, immunomodulation and inflammation and physical performance in healthy persons and in cardiovascular diseases; elucidating if there is an interaction of exercise and diet.
Collapse
Affiliation(s)
- Marko Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Aleksandar Kibel
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Dermatology, Osijek University Hospital, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Thota RN, Ferguson JJA, Abbott KA, Dias CB, Garg ML. Science behind the cardio-metabolic benefits of omega-3 polyunsaturated fatty acids: biochemical effects vs. clinical outcomes. Food Funct 2018; 9:3576-3596. [PMID: 29904777 DOI: 10.1039/c8fo00348c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lower incidence of cardiovascular disease (CVD) in the Greenland Inuit, Northern Canada and Japan has been attributed to their consumption of seafood rich in long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA). While a large majority of pre-clinical and intervention trials have demonstrated heart health benefits of LCn-3PUFA, some studies have shown no effects or even negative effects. LCn-3PUFA have been shown to favourably modulate blood lipid levels, particularly a reduction in circulating levels of triglycerides. High density lipoprotein-cholesterol (HDL-C) levels are elevated following dietary supplementation with LCn-3PUFA. Although LCn-3PUFA have been shown to increase low-density lipoprotein-cholesterol (LDL-C) levels, the increase is primarily in the large-buoyant particles that are less atherogenic than small-dense LDL particles. The anti-inflammatory effects of LCn-3PUFA have been clearly outlined with inhibition of NFkB mediated cytokine production being the main mechanism. In addition, reduction in adhesion molecules (intercellular adhesion molecule, ICAM and vascular cell adhesion molecule 1, VCAM-1) and leukotriene production have also been demonstrated following LCn-3PUFA supplementation. Anti-aggregatory effects of LCn-3PUFA have been a subject of controversy, however, recent studies showing sex-specific effects on platelet aggregation have helped resolve the effects on hyperactive platelets. Improvements in endothelium function, blood flow and blood pressure after LCn-3PUFA supplementation add to the mechanistic explanation on their cardio-protective effects. Modulation of adipose tissue secretions including pro-inflammatory mediators and adipokines by LCn-3PUFA has re-ignited interest in their cardiovascular health benefits. The aim of this narrative review is to filter out the reasons for possible disparity between cohort, mechanistic, pre-clinical and clinical studies. The focus of the article is to provide possible explanation for the observed controversies surrounding heart health benefits of LCn-3PUFA.
Collapse
Affiliation(s)
- Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | |
Collapse
|
9
|
Stupin A, Rasic L, Matic A, Stupin M, Kralik Z, Kralik G, Grcevic M, Drenjancevic I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl Physiol Nutr Metab 2018; 43:988-995. [DOI: 10.1139/apnm-2017-0735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The beneficial effect of omega-3 polyunsaturated fatty acids (PUFA) supplementation on the cardiovascular (CV) system is well supported in CV patients; however, the effect of the consumption of omega-3 PUFA-enriched functional food in healthy individuals is still not fully elucidated. This study aimed to determine the effect of the consumption of omega-3 PUFA-enriched hen eggs on the microvascular reactivity (primary outcome), blood pressure (BP), and serum lipid profile in young healthy individuals. The control group (N = 16) ate 3 ordinary hen eggs (277 mg of omega-3 PUFAs/day), and the OMEGA-3 group (N = 20) ate 3 omega-3 PUFA-enriched eggs containing 259 mg of omega-3 PUFAs/egg daily (α-linolenic acid (ALA), 167 mg/egg; eicosapentaenoic acid (EPA), 7 mg/egg; docosahexaenoic acid (DHA), 84 mg/egg) for 3 weeks (777 mg of omega-3 PUFA/day). Postocclusive reactive hyperemia (PORH) in skin microcirculation assessed by laser Doppler flowmetry, serum lipid profile, fasting blood glucose, high-sensitivity C-reactive protein (hsCRP), and arterial BP were measured in all subjects before and after the protocol. PORH was significantly enhanced, and triglycerides, hsCRP, and BP were significantly decreased in the OMEGA-3 group compared with baseline measurements, whereas there was no significant difference in the control group after the protocol when compared with baseline. To the best of our knowledge, this is the first study to demonstrate that consumption of a mixture of omega-3 PUFA (ALA + EPA + DHA), provided via enriched hen eggs, elicits changes in the microvascular reactivity, BP, and triglyceride level in healthy subjects that are associated with CV benefits, thus suggesting that daily consumption of omega-3 PUFA-enriched eggs in healthy individuals may potentially contribute to CV risk factor attenuation and disease prevention.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Lidija Rasic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
- Department for Cardiovascular Disease, Osijek University Hospital, Osijek HR-31000, Croatia
| | - Zlata Kralik
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Gordana Kralik
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Manuela Grcevic
- Department for Special Zootechnics, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia
| |
Collapse
|
10
|
Shen T, Xing G, Zhu J, Zhang S, Cai Y, Li D, Xu G, Xing E, Rao J, Shi R. Effects of 12-week supplementation of marine Omega-3 PUFA-based formulation Omega3Q10 in older adults with prehypertension and/or elevated blood cholesterol. Lipids Health Dis 2017; 16:253. [PMID: 29282085 PMCID: PMC5745982 DOI: 10.1186/s12944-017-0617-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/19/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUNDS To study the effects of supplementation of a marine omega-3 poly-unsaturated fatty acids (n3-PUFA) formulation (Omega3Q10) in older adults with hypertension and/or hypercholesterolemia. METHODS A total of 97 people were enrolled to receive 12-week supplementation of either Omega3Q10 (n = 48) or soybean oil (n = 49). Total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and hypertension-related symptoms were determined before and after the supplementation. RESULTS There were no baseline differences between the two groups. Omega3Q10 supplementation significantly reduced diastolic blood pressure (DBP) (from 81.6 ± 5.3 mmHg to 79.3 ± 5.2 mmHg, P < 0.05). Blood concentrations of TC and LDL-C decreased significantly and blood HDL-C level increased significantly after 12 weeks of Omega3Q10 (5.5 ± 0.7 vs. 5.3 ± 0.5, P < 0.05; 3.7 ± 0.8 vs. 3.3 ± 0.6, P < 0.05; 1.2 ± 0.6 vs. 1.3 ± 0.5, P < 0.05, respectively) and soybean oil supplementation (5.7 ± 0.8 vs. 5.6 ± 0.7, P < 0.05; 3.6 ± 0.7 vs. 3.4 ± 0.8, P < 0.05; 1.0 ± 0.8 vs. 1.2 ± 0.7, P < 0.05, respectively) but no group differences were found. A significantly greater proportion of the people in the Omega3Q10 group became free from headache and palpitations & chest tightness symptoms after the 12-week supplementation compared to that of the soybean oil group (95.5% vs. 71.4%, P < 0.01; 95.8 vs. 75.5%, P < 0.01, respectively). CONCLUSION 12-week supplementation of Fish oil-based PUFA appear to be more effective in improving DBP and hypertension-related symptoms than soybean oil in old adults with hypertension and hypercholesterolemia although both supplementation improved TC, LDL-C and HDL-C concentrations.
Collapse
Affiliation(s)
- Tian Shen
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025 People’s Republic of China
| | - Guoqiang Xing
- Imaging Institute of Rehabilitation and Development of Brain Function, the Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000 People’s Republic of China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD 20850 USA
| | - Jingfen Zhu
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025 People’s Republic of China
| | - Shuxian Zhang
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025 People’s Republic of China
| | - Yong Cai
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025 People’s Republic of China
- Department of Community Health and Family Medicine, Shanghai Jiao Tong University School of Public Health, Shanghai, 200025 People’s Republic of China
| | - Donghua Li
- Tang Qiao Community Health Service Center, Pudong New District, Shanghai, 200127 People’s Republic of China
| | - Gang Xu
- Department of Community Health and Behavior Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025 People’s Republic of China
| | - Evan Xing
- Biochemistry Program, University of Maryland, Baltimore, MD 21201 USA
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Rong Shi
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
11
|
Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol 2017; 10:865-873. [PMID: 28531360 DOI: 10.1080/17512433.2017.1333902] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Large-scale epidemiological studies on Greenlandic, Canadian and Alaskan Eskimos have examined the health benefits of omega-3 fatty acids consumed as part of the diet, and found statistically significant relative reduction in cardiovascular risk in people consuming omega-3 fatty acids. Areas covered: This article reviews studies on omega-3 fatty acids during the last 50 years, and identifies issues relevant to future studies on cardiovascular (CV) risk. Expert commentary: Although a meta-analysis of large-scale prospective cohort studies and randomized studies reported that fish and fish oil consumption reduced coronary heart disease-related mortality and sudden cardiac death, omega-3 fatty acids have not yet been shown to be effective in secondary prevention trials on patients with multiple cardiovascular disease (CVD) risk factors. The ongoing long-term CV interventional outcome studies investigate high-dose, prescription-strength omega-3 fatty acids. The results are expected to clarify the potential role of omega-3 fatty acids in reducing CV risk. The anti-inflammatory properties of omega-3 fatty acids are also important. Future clinical trials should also focus on the role of these anti-inflammatory mediators in human arteriosclerotic diseases as well as inflammatory diseases.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- a Center for Diabetes, Metabolism and Endocrinology , Toho University Sakura Medical Center , Sakura, Chiba , Japan
| | - Ichiro Tatsuno
- a Center for Diabetes, Metabolism and Endocrinology , Toho University Sakura Medical Center , Sakura, Chiba , Japan
| |
Collapse
|
12
|
Kones R, Howell S, Rumana U. n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: Principles, Practices, Pitfalls, and Promises - A Contemporary Review. Med Princ Pract 2017; 26:497-508. [PMID: 29186721 PMCID: PMC5848472 DOI: 10.1159/000485837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Amidst voluminous literature, inconsistencies and opposing results have confused rather than clarified cardiologists' ability to assess the potential benefits of n-3 polyunsaturated fatty acids (n-3 PUFA). In perspective, there are common themes that emerge from n-3 PUFA studies, even as imperfect as they may be. The approach taken was to identify and unite these themes into a manageable, cohesive, evidence-based, yet useful synthesis. In all reviews and meta-analyses, the selection of component studies and assumptions influences outcomes. This overarching principle must be combined with the totality of the data, particularly when evidence is incompletely understood and gaps in knowledge must be bridged. Both the older literature and the most recent rigorous meta-analyses indicate that n-3 PUFA are highly pleiotropic agents with many documented positive physiological effects. Concordance among preclinical, observational, randomized clinical trials and meta-analyses is impressive. These agents have modest, statistically significant benefits which accrue over time. Given their favorable safety profile, a risk reduction of about 10% justifies their potential use in cardiovascular disease.
Collapse
Affiliation(s)
- Richard Kones
- The Cardiometabolic Research Institute, Texas, USA
- *Richard Kones MD, FAHA, FESC, FRSM, FCCP, FAGS, FRSH, FRSB, Cardiometabolic Research Institute, 8181 Fannin Street, Building 3, Unit 314, Houston, TX 77054-2913 (USA), E-Mail
| | - Scott Howell
- Department of Medicine, BMU School of Medicine, Winston-Salem, North Carolina, USA
| | - Umme Rumana
- The Cardiometabolic Research Institute, Texas, USA
- University of Texas Health Science Center Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|
14
|
Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Functional food addressing heart health: do we have to target the gut microbiota? Curr Opin Clin Nutr Metab Care 2015; 18:566-71. [PMID: 26406391 DOI: 10.1097/mco.0000000000000224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Health promoting functional food ingredients for cardiovascular health are generally aimed at modulating lipid metabolism in consumers. However, significant advances have furthered our understanding of the mechanisms involved in development, progression, and treatment of cardiovascular disease. In parallel, a central role of the gut microbiota, both in accelerating and attenuating cardiovascular disease, has emerged. RECENT FINDINGS Modulation of the gut microbiota, by use of prebiotics and probiotics, has recently shown promise in cardiovascular disease prevention. Certain prebiotics can promote a short chain fatty acid profile that alters hormone secretion and attenuates cholesterol synthesis, whereas bile salt hydrolase and exopolysaccharide-producing probiotics have been shown to actively correct hypercholesterolemia. Furthermore, specific microbial genera have been identified as potential cardiovascular disease risk factors. This effect is attributed to the ability of certain members of the gut microbiota to convert dietary quaternary amines to trimethylamine, the primary substrate of the putatively atherosclerosis-promoting compound trimethylamine-N-oxide. In this respect, current research is indicating trimethylamine-depleting Achaea - termed Archeabiotics as a potential novel dietary strategy for promoting heart health. SUMMARY The microbiota offers a modifiable target, which has the potential to progress or prevent cardiovascular disease development. Whereas host-targeted interventions remain the standard, current research implicates microbiota-mediated therapies as an effective means of modulating cardiovascular health.
Collapse
Affiliation(s)
- Paul M Ryan
- aFood Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy bSchool of Microbiology cAPC Microbiome Institute, Biosciences Institute dCollege of Science, Engineering and Food Science eCentre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
15
|
Frömel T, Fleming I. Whatever happened to the epoxyeicosatrienoic Acid-like endothelium-derived hyperpolarizing factor? The identification of novel classes of lipid mediators and their role in vascular homeostasis. Antioxid Redox Signal 2015; 22:1273-92. [PMID: 25330284 DOI: 10.1089/ars.2014.6150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) to generate epoxyeicosatrienoic acids (EETs). The latter are biologically active and reported to act as an endothelium-derived hyperpolarizing factor as well as to affect angiogenic and inflammatory signaling pathways. RECENT ADVANCES In addition to AA, the CYP enzymes also metabolize the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid to generate bioactive lipid epoxide mediators. The latter can be more potent than the EETs, but their actions are under investigated. The ω3-epoxides, like the EETs, are metabolized by the soluble epoxide hydrolase (sEH) to corresponding diols, and epoxide hydrolase inhibition increases epoxide levels and demonstrates anti-hypertensive as well as anti-inflammatory effects. CRITICAL ISSUES It seems that the overall consequences of CYP activation largely depend on enzyme substrate preference and the endogenous ω-3/ω-6 PUFA ratio. FUTURE DIRECTIONS More studies combining PUFA profiling with cell signaling and disease studies are required to determine the spectrum of molecular pathways affected by the different ω-6 and ω-3 PUFA epoxides and diols. Such information may help improve dietary studies aimed at promoting health via ω-3 PUFA supplementation and/or sEH inhibition.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Frankfurt, Germany
| | | |
Collapse
|
16
|
Li CJ, Norstedt G, Hu ZG, Yu P, Li DQ, Li J, Yu Q, Sederholm M, Yu DM. Effects of a Macro-Nutrient Preload on Type 2 Diabetic Patients. Front Endocrinol (Lausanne) 2015; 6:139. [PMID: 26441829 PMCID: PMC4584965 DOI: 10.3389/fendo.2015.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 01/05/2023] Open
Abstract
AIMS Macro-nutrient preloads given 30 min before regular meals may improve metabolism. The aim was to investigate how type 2 diabetic patients react to a preload consisting of a blend of macro-nutrients with a low-glycemic index (Inzone Preload(®)). METHODS In a before-after study design, 30 subjects with type 2 diabetes mellitus (T2DM) were enrolled in a 12-week program. All subjects were given Inzone Preload (43% proteins, 29% carbohydrates, 10% lipids, and 9% fibers, 71 kcal), 30 min before each meal during 12 weeks. Fasting glucose and postprandial 2 h glucose were monitored every second week. Body weight (BW) and waist circumference were measured each month. Fasting plasma glucose, glycosylated hemoglobin, serum lipids, fasting insulin, C-reactive protein, and homeostasis model assessment were evaluated before and after the intervention. Subjective appetite was monitored using visual analogue scales after the Inzone Preload. RESULTS The dietary intervention significantly influenced several metabolic parameters compared to base line. Inzone Preload treatment reduced mean postprandial plasma glucose levels (12.2 ± 1.2 vs. 10.5 ± 2.0 mmol/L), HbA1c (7.4 ± 0.3 vs. 7.1 ± 0.2%), mean total cholesterol (4.8 ± 0.9 vs. 4.3 ± 0.8 mmol/L), low-density lipoprotein cholesterol (2.8 ± 0.6 vs. 2.5 ± 0.4 mmol/L), and CRP (1.5 ± 1.4 vs. 0.7 ± 0.7 mg/L). BW loss of more than 3% was seen in 13 participants (43%). Feelings of satiety were significantly higher after Inzone Preload than after habitual breakfast (p < 0.05). No significant changes in fasting blood glucose, high-density lipoprotein and total triacylglycerol, HOMA-IR, and HOMA-β were observed. CONCLUSION A macro-nutrient preload treatment reduces postprandial glucose, inflammatory markers, and serum lipids in patients with T2DM. Approximately half of the study group also displayed reduced BW.
Collapse
Affiliation(s)
- Chun-Jun Li
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Gunnar Norstedt
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhao-Gian Hu
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Dai-Qing Li
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Qian Yu
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
| | - Magnus Sederholm
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - De-Min Yu
- Key Laboratory of Hormone and Development (Ministry of Health), Department of Endocrinology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: De-Min Yu, Department of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University, Tianjin, China,
| |
Collapse
|
17
|
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 2014; 66:1106-40. [PMID: 25244930 DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|