1
|
Wang K, Zhou Y, Cao L, Lin L, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica for Sustainable Production of the Pomegranate Seed Oil-Derived Punicic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3088-3098. [PMID: 38282297 DOI: 10.1021/acs.jafc.3c08718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Punicic acid is a conjugated linolenic acid with various biological activities including antiobesity, antioxidant, anticancer, and anti-inflammatory effects. It is often used as a nutraceutical, dietary additive, and animal feed. Currently, punicic acid is primarily extracted from pomegranate seed oil, but it is restricted due to the extended growth cycle, climatic limitations, and low recovery level. There have also been reports on the chemical synthesis of punicic acid, but it resulted in a mixture of structurally similar isomers, requiring additional purification/separation steps. In this study, a comprehensive strategy for the production of punicic acid in Yarrowia lipolytica was implemented by pushing the supply of linoleic acid precursors in a high-oleic oil strain, expressing multiple copies of the fatty acid conjugase gene from Punica granatum, engineering the acyl-editing pathway to improve the phosphatidylcholine pool, and promoting the assembly of punicic acid in the form of triglycerides. The optimal strain with high oil production capacity and a significantly increased punicic acid ratio accumulated 3072.72 mg/L punicic acid, accounting for 6.19% of total fatty acids in fed-batch fermentation, providing a viable, sustainable, and green approach for punicic acid production to substitute plant extraction and chemical synthesis production.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yueyue Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lizhen Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
2
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Queiroz MP, da Silva Lima M, de Melo MFFT, Queiroga RDCRDE, Bessa RJB, Alves SPA, Barbosa Soares JK. Maternal consumption of conjugated linoleic acid improves tolerance to glucose and hdl-cholesterol in the rat progeny. Food Funct 2021; 11:9075-9085. [PMID: 33026015 DOI: 10.1039/d0fo00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our study evaluates the impacts of maternal consumption of different levels of CLA during pregnancy and lactation on physical and metabolic changes in the rat progeny. Three groups were formed: control (CG) - diet without CLA; CLA1 - diet containing 1% CLA; and CLA3 - diet containing 3% CLA. Murinometry, body fat collection, biochemical analysis, glycemic curves, liver fat amount, and fatty acid profiles of the liver were studied. The data were analyzed by ANOVA, followed by the Tukey test (p < 0.05). The CLA3 group presented highest body weight, feed intake and BMI (p < 0.05). The retroperitoneal fat, epididymal fat, and body fat index were higher in the CLA1 and CLA3 groups (p < 0.05) but no difference was observed for mesenteric fat. Yet in contrast, the experimental groups presented lower abdominal circumference and glycemic curves when compared to the CG (p < 0.05). CLA1 and CLA3 groups presented higher values of total cholesterol and HDL-cholesterol (p < 0.05), yet no difference was found in serum triglycerides or LDL. The CLA3 group presented less n-3, n-6, total PUFA, and arachidonic acid in liver fat (p < 0.05). The CLA1 and CLA3 groups were higher in total MUFA in the liver fat. In conclusion, CLA when consumed during gestation and lactation increased: tolerance to glucose, HDL, and the body fat index in the offspring. Only the CLA3 group presented reduced total PUFA, n-3, n-6 and arachidonic acid in the offspring's liver.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil.
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | | | - Rita de Cássia Ramos do Egypto Queiroga
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil. and Laboratory of Bromatology, Department of Nutrition, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Rui José Branquinho Bessa
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Susana Paula Almeida Alves
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil. and Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
4
|
Yang C, Zhu B, Ye S, Fu Z, Li J. Isomer-Specific Effects of cis-9, trans-11- and trans-10, cis-12-CLA on Immune Regulation in Ruminal Epithelial Cells. Animals (Basel) 2021; 11:ani11041169. [PMID: 33921651 PMCID: PMC8072642 DOI: 10.3390/ani11041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The significant contribution of rumen microbiota to the balance of the innate immunity of rumen epithelium has been extensively verified. As the natural rumen microbial metabolites, information regarding the immunoprotective effects of different conjugated linoleic acid (CLA) isomers on ruminal epithelial cells (RECs) is limited. In this study, the 100 μM trans-10,cis-12-CLA exerted better anti-inflammatory effects than the cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon lipopolysaccharide (LPS) stimulation. The trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of gene ontology (GO) terms’ response to lipopolysaccharide, the regulation of signal transduction and cytokine production and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future. Abstract In this study, we used transcriptomics and qPCR to investigate the potential immunoprotective effects of different conjugated linoleic acid (CLA) isomers, the natural rumen microbial metabolites, on lipopolysaccharide (LPS)-induced inflammation of ruminal epithelial cells (RECs) in vitro. The results showed that 100 μM trans-10,cis-12-CLA exerted higher anti-inflammatory effects than cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon LPS stimulation. Transcriptomic analyses further indicated that pretreatment with trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of GO terms’ response to LPS, the regulation of signal transduction and cytokine production and KEGG pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
- Correspondence: (Z.F.); (J.L.)
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Z.F.); (J.L.)
| |
Collapse
|
5
|
Su H, Zhao W, Zhang F, Song M, Liu F, Zheng J, Ling M, Yang X, Yang Q, He H, Chen L, Lai X, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. cis 9, trans 11, but not trans 10, cis 12 CLA isomer, impairs intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca 2+] i and the MLCK signaling pathway. Food Funct 2021; 11:3657-3667. [PMID: 32296804 DOI: 10.1039/d0fo00376j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.
Collapse
Affiliation(s)
- Han Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jisong Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haiwen He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
6
|
Yu L, Lu H, Yang X, Li R, Shi J, Yu Y, Ma C, Sun F, Zhang S, Zhang F. Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats. Toxicol Appl Pharmacol 2021; 412:115388. [PMID: 33383043 DOI: 10.1016/j.taap.2020.115388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Phytosterol diosgenin (DG) exhibits cholesterol-lowering properties. Few studies focused on the underlying mechanism of DG attenuation of hypercholesterolemia by promoting cholesterol metabolism. To investigate the roles of SRB1/CES-1/CYP7A1/FXR pathways in accelerating cholesterol elimination and alleviating hypercholesterolemia, a rat model of hypercholesterolemia was induced by providing a high-fat diet (HFD). Experimental rat models were randomly divided into a normal control (Con) group, HFD group, low-dose DG (LDG) group (150 mg/kg/d), high-dose DG (HDG) group (300 mg/kg) and Simvastatin (Sim) group (4 mg/kg/d). Body weights, serum and hepatic lipid parameters of rats were tested. The expression levels of scavenger receptor class B type I (SRB1), carboxylesterase-1 (CES-1), cholesterol7α- hydroxylase (CYP7A1), and farnesoid X receptor (FXR) were determined. The results showed that DG reduced weight and lowered lipid levels in HFD-fed rats. Pathological morphology analyses revealed that DG notably improved hepatic steatosis and intestinal structure. Further studies showed the increased hepatic SRB1, CES-1, CYP7A1 and inhibited FXR-mediated signaling in DG-fed rats, which contributing to the decrease of hepatic cholesterol. DG also increased intestinal SRB1 and CES-1, inhibiting cholesterol absorption and promoting RCT. The expression levels of these receptors in the HDG group were higher than LDG and Sim groups. These data suggested that DG accelerated reverse cholesterol transport (RCT) and enhanced cholesterol elimination via SRB1/CES-1/CYP7A1/FXR pathway, and DG might be a new candidate for the alleviation of hypercholesterolemia.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Haifei Lu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiufen Yang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ruoqi Li
- Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Jingjing Shi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yantong Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Chaoqun Ma
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengcui Sun
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Shizhao Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
7
|
Davison KM, Lung Y, Lin SL, Tong H, Kobayashi KM, Fuller-Thomson E. Depression in middle and older adulthood: the role of immigration, nutrition, and other determinants of health in the Canadian longitudinal study on aging. BMC Psychiatry 2019; 19:329. [PMID: 31690283 PMCID: PMC6833158 DOI: 10.1186/s12888-019-2309-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Little is known about depression in middle-aged and older Canadians and how it is affected by health determinants, particularly immigrant status. This study examined depression and socio-economic, health, immigration and nutrition-related factors in older adults. METHODS Using weighted comprehensive cohort data from the baseline Canadian Longitudinal Study on Aging (n = 27,162) of adults aged 45-85, gender-specific binary logistic regression was conducted with the cross-sectional data using the following variables: 1) Depression (outcome) measured using the Center for Epidemiologic Studies Short Depression (CESD-10) rating scale; 2) Immigration status: native-born, recent and mid-term (< 20 years), and long-term immigrants (≥20 years); and 3) covariates: socioeconomic status, physical health (e.g., multi-morbidity), health behavior (e.g., substance use), over-nutrition (e.g., anthropometrics), under-nutrition (e.g., nutrition risk), and dietary intake. RESULTS The sample respondents were mainly Canadian-born (82.6%), women (50.6%), 56-65 years (58.9%), earning between C$50,000-99,999 (33.2%), and in a relationship (69.4%). When compared to Canadian-born residents, recent, mid-term (< 20 years), and longer-term (≥ 20 years) immigrant women were more likely to report depression and this relationship was robust to adjustments for 32 covariates (adjusted ORs = 1.19, 2.54, respectively, p < 0.001). For women, not completing secondary school (OR = 1.23, p < 0.05), stage 1 hypertension (OR = 1.31, p < 0.001), chronic pain (OR = 1.79, p < 0.001), low fruit/vegetable intakes (OR = 1.33, p < 0.05), and fruit juice (OR = 1.80, p < 0.001), chocolate (ORs = 1.15-1.66, p's < 0.05), or salty snack (OR = 1.19, p < 0.05) consumption were associated with depression. For all participants, lower grip strength (OR = 1.25, p < 0.001) and high nutritional risk (OR = 2.24, p < 0.001) were associated with depression. For men, being in a relationship (OR = 0.62, p < 0.001), completing post-secondary education (OR = 0.82, p < 0.05), higher fat (ORs = 0.67-83, p's < 0.05) and omega-3 egg intake (OR = 0.86, p < 0.05) as well as moderate intakes of fruits/vegetables and calcium/high vitamin D sources (ORs = 0.71-0.743, p's < 0.05) predicted a lower likelihood of depression. For men, chronic conditions (ORs = 1.36-3.65, p's < 0.001), chronic pain (OR = 1.86, p < 0.001), smoking (OR = 1.17, p < 0.001), or chocolate consumption (ORs = 1.14-1.72, p's < 0.05) predicted a higher likelihood of depression. CONCLUSIONS The odds of developing depression were highest among immigrant women. Depression in middle-aged and older adults is also associated with socioeconomic, physical, and nutritional factors and the relationships differ by sex. These results provide insights for mental health interventions specific to adults aged 45-85.
Collapse
Affiliation(s)
- Karen M Davison
- Faculty of Social Science, University of Hawaii, Honolulu, Hawaii, USA
- Faculty of Science and Horticulture (Health Science), Kwantlen Polytechnic University, Surrey, British Columbia, Canada
| | - Yu Lung
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
| | - Shen Lamson Lin
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
- Institute for Life Course & Aging, University of Toronto, Toronto, Ontario, Canada
| | - Hongmei Tong
- Faculty of Health and Community Studies, MacEwan University, Edmonton, Alberta, Canada
| | - Karen M Kobayashi
- Faculty of Social Science, University of Victoria, Victoria, British Columbia, Canada
| | - Esme Fuller-Thomson
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada.
- Institute for Life Course & Aging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Morais CLM, Lima KMG, Martin FL. Colourimetric Determination of High-Density Lipoprotein (HDL) Cholesterol Using Red–Green–Blue Digital Colour Imaging. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1453833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Camilo L. M. Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Kássio M. G. Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|