1
|
Minaya DM, Hoss A, Bhagat A, Guo TL, Czaja K. Sex-Specific Effect of a High-Energy Diet on Body Composition, Gut Microbiota, and Inflammatory Markers in Rats. Nutrients 2025; 17:1147. [PMID: 40218905 PMCID: PMC11990636 DOI: 10.3390/nu17071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: A high-energy-density (HED) diet promotes body weight gain, fat accumulation, and gut dysbiosis, contributing to obesity. The aim of this study was to characterize the initial response to HED diet consumption, as well as identify any sex differences in body composition, systemic inflammation, gut microbiome, and fecal fat excretion in rats. Methods: Male and female Sprague-Dawley rats were fed a low-energy-density (LED) diet for 10 days and were then switched to an HED diet for four weeks. Food intake, body weight, and body composition were measured routinely. Serum samples were collected to measure inflammatory cytokines/chemokines. Fecal samples were collected for microbiome analysis and lipid content. Results: After the HED diet, all rats gained body weight and fat mass, with males exhibiting increased susceptibility to weight gain. Males displayed either a diet-induced obesity phenotype (DIO-P) or a diet-resistant (DR) phenotype, as characterized by their differential body weight gain. Males showed elevated TGF-β levels, while females exhibited increases in Interferon gamma-inducible protein 10 (IP-10), regulated on activation, normal T cell expressed and secreted (RANTES) protein, and basic fibroblast growth factor (FGFb). Changes in gut microbiota composition revealed a reduction in beneficial species, like Bacteroides uniformis and Parabacteroides distasonis, and an increase in species such as Akkermansia muciniphila. Sex differences in fat metabolism were shown in the greater fecal fat excretion observed in males. Conclusions: Our study demonstrates that short-term consumption of a high-energy diet elicits notable sex-specific differences in body weight, body composition, inflammatory markers, gut microbiota, and fat excretion in Sprague-Dawley rats. While we recognize that this study has a small sample size and a short-term intervention, our findings highlight the critical role of sex as a biological variable in diet-induced obesity research.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30605, USA;
| | - Adam Hoss
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.H.); (T.L.G.)
| | - Ayushi Bhagat
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.H.); (T.L.G.)
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.H.); (T.L.G.)
| |
Collapse
|
2
|
Clarke HA, Hawkinson TR, Shedlock CJ, Medina T, Ribas RA, Wu L, Liu Z, Ma X, Xia Y, Huang Y, He X, Chang JE, Young LEA, Juras JA, Buoncristiani MD, James AN, Rushin A, Merritt ME, Mestas A, Lamb JF, Manauis EC, Austin GL, Chen L, Singh PK, Bian J, Vander Kooi CW, Evers BM, Brainson CF, Allison DB, Gentry MS, Sun RC. Glycogen drives tumour initiation and progression in lung adenocarcinoma. Nat Metab 2025:10.1038/s42255-025-01243-8. [PMID: 40069440 DOI: 10.1038/s42255-025-01243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is an aggressive cancer defined by oncogenic drivers and metabolic reprogramming. Here we leverage next-generation spatial screens to identify glycogen as a critical and previously underexplored oncogenic metabolite. High-throughput spatial analysis of human LUAD samples revealed that glycogen accumulation correlates with increased tumour grade and poor survival. Furthermore, we assessed the effect of increasing glycogen levels on LUAD via dietary intervention or via a genetic model. Approaches that increased glycogen levels provided compelling evidence that elevated glycogen substantially accelerates tumour progression, driving the formation of higher-grade tumours, while the genetic ablation of glycogen synthase effectively suppressed tumour growth. To further establish the connection between glycogen and cellular metabolism, we developed a multiplexed spatial technique to simultaneously assess glycogen and cellular metabolites, uncovering a direct relationship between glycogen levels and elevated central carbon metabolites essential for tumour growth. Our findings support the conclusion that glycogen accumulation drives LUAD cancer progression and provide a framework for integrating spatial metabolomics with translational models to uncover metabolic drivers of cancer.
Collapse
Affiliation(s)
- Harrison A Clarke
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Cameron J Shedlock
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Roberto A Ribas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Lei Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Zizhen Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Xin Ma
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Biostatistics College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Xia
- Department of Biostatistics College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yu Huang
- Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
- Regenstrief Institute, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, School of Medicine, Indianapolis, IN, USA
| | - Xing He
- Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
- Regenstrief Institute, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, School of Medicine, Indianapolis, IN, USA
| | - Josephine E Chang
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Lyndsay E A Young
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jelena A Juras
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Alexis N James
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anna Rushin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Annette Mestas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jessica F Lamb
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Elena C Manauis
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Li Chen
- Department of Biostatistics College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
- Regenstrief Institute, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, School of Medicine, Indianapolis, IN, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Christine F Brainson
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA.
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA.
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Moral R, Kapravelou G, Cubedo M, Solanas M, Escrich E. Body weight gain and control: beneficial effect of extra virgin olive oil versus corn oil in an experimental model of mammary cancer. J Nutr Biochem 2024; 125:109549. [PMID: 38104866 DOI: 10.1016/j.jnutbio.2023.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Obesity is a known risk factor for breast cancer, the most common malignancy among women worldwide. We have previously described different effects of high-fat diets on mammary experimental carcinogenesis. In this work, we analyzed the animal growth data obtained in six experimental assays, in healthy and carcinogen-induced rats undergoing different dietary interventions. The animals were fed with three experimental diets administered at different periods of development: a control low-fat diet, and two isocaloric high-fat diets (rich in corn oil or in extravirgin olive oil -EVOO-). Weekly weight throughout the development of 818 animals have been compiled and reanalyzed using adjusted mathematical models. Molecular mechanisms have been investigated: ethanolamides in small intestine, neuropeptides controlling satiety in hypothalamus, and proteins controlling lipid metabolism in adipose and mammary tissues. The results indicated that the effect of diets depended on type of lipid, timing of intervention and health status. The high corn oil diet, but not the high EVOO diet, increased body weight and mass, especially if administered from weaning, in healthy animals and in those that received a moderate dose of carcinogen. The potential protective effect of EVOO on weight maintenance may be related to anorexigenic neuropeptides such as oxytocin and lipolysis/deposition balance in adipose tissue (increasing phospho-PKA, HSL, MGL and decreasing FAS). In animals with cancer, body weight gain was related to the severity of the disease. Taken together, our results suggest that EVOO has a beneficial effect on body weight maintenance in both health and cancer.
Collapse
Affiliation(s)
- Raquel Moral
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Garyfallia Kapravelou
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marta Cubedo
- Department of Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Solanas
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Eduard Escrich
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
4
|
Garcia-Guasch M, Escrich E, Moral R, Duarte IF. Metabolomics Insights into the Differential Response of Breast Cancer Cells to the Phenolic Compounds Hydroxytyrosol and Luteolin. Molecules 2023; 28:molecules28093886. [PMID: 37175295 PMCID: PMC10179918 DOI: 10.3390/molecules28093886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effects of two phenolic compounds found in extra virgin olive oil, hydroxytyrosol (HT) and luteolin (LUT), on the metabolism of breast cancer (BC) cells of different molecular subtypes. An untargeted metabolomics approach was used to characterize the metabolic responses of both triple-negative MDA-MB-231 cells and hormone-responsive MCF-7 cells to treatment with these phenols. Notably, while some effects were common across both cell types, others were dependent on the cell type, highlighting the importance of cellular metabolic phenotype. Common effects included stimulation of mitochondrial metabolism, acetate production, and formate overflow. On the other hand, glucose metabolism and lactate production were differentially modulated. HT and LUT appeared to inhibit glycolysis and promote the hexosamine biosynthetic pathway in MDA-MB-231 cells, while MCF-7 cells exhibited higher glycolytic flux when treated with phenolic compounds. Another significant difference was observed in lipid metabolism. Treated MDA-MB-231 cells displayed increased levels of neutral lipids (likely stored in cytosolic droplets), whereas treatment of MCF-7 cells with HT led to a decrease in triacylglycerols. Additionally, glutathione levels increased in MDA-MB-231 cells treated with HT or LUT, as well as in MCF-7 cells treated with LUT. In contrast, in HT-treated MCF-7 cells, glutathione levels decreased, indicating different modulation of cellular redox status. Overall, this work provides new insights into the metabolic impact of HT and LUT on different BC cell subtypes, paving the way for a better understanding of the nutritional relevance of these phenolic compounds in the context of BC prevention and management.
Collapse
Affiliation(s)
- Maite Garcia-Guasch
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eduard Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Raquel Moral
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Bernard L, Chilliard Y, Hove K, Volden H, Inglingstad RA, Eknæs M. Feeding of palm oil fatty acids or rapeseed oil throughout lactation: Effects on mammary gene expression and milk production in Norwegian dairy goats. J Dairy Sci 2022; 105:8792-8805. [PMID: 36175242 DOI: 10.3168/jds.2021-21372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Lipid added as rapeseed or palm oil to the diet of dairy goats over 8 mo of one lactation alters fat secretion and milk fatty acid (FA) and protein composition. In this study, we examined the contribution of mammary gene expression to these changes and included 30 multiparous goats of Norwegian dairy goat breed for a 230-d experimental period, with indoor feeding from 1 to 120 d in milk (DIM), mountain grazing from 120 to 200 DIM, and indoor feeding from 200 to 230 DIM. After an initial period (1-60 DIM) when the control diet was given to all goats, the animals were subdivided into 3 groups of 10 goats. Treatments (60-230 DIM) were basal concentrate (control) alone or supplemented with either 8% (by weight) hydrogenated palm oil enriched with palmitic acid (POFA) or 8% (by weight) rapeseed oil (RSO). Milk was sampled individually from all animals throughout lactation, at 60, 120, 190, and 230 DIM for milk yield and composition. On d 60, 120, 190, and 230, mammary tissue was collected by biopsy to measure mRNA abundance of 19 key genes. None of the 19 genes involved in milk protein, apoptosis, lipid metabolism, transcription factors, and protein of the milk fat globule membrane, as measured by mRNA abundance, were affected by the lipid supplements, although POFA increased milk fat content, and POFA and RSO affected milk FA composition. Over the experimental period (120-230 DIM), the mRNA abundance of 13 of the 19 studied genes was affected by lactation stage. For some genes, expression either gradually increased from 120 to 230 DIM (CSN2,CASP8,CD36,GLUT4) or increased from 120 to 200 and then remained stable (XDH), or decreased (CSN3,G6PD,SREBF1,PPARG1) or increased only at 230 DIM (SCD1,SCD5,ELF3). For a second group of genes (CSN1, LALBA, FABP3, FASN, LPL, MFGE8), expression was stable over the lactation period. Our results suggest that factors other than gene expression, such as substrate availability or posttranscriptional regulation of these genes, could play an important role in the milk fat and FA responses to dietary fat composition in the goat. In conclusion, mammary gene expression in goats was more regulated by stage of lactation than by the dietary treatments applied.
Collapse
Affiliation(s)
- L Bernard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Y Chilliard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - K Hove
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - H Volden
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - R A Inglingstad
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - M Eknæs
- Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway.
| |
Collapse
|
6
|
Extra-Virgin Olive Oil and Its Minor Compounds Influence Apoptosis in Experimental Mammary Tumors and Human Breast Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14040905. [PMID: 35205652 PMCID: PMC8870719 DOI: 10.3390/cancers14040905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Breast cancer is a disease influenced by dietetic factors, such as the type and amount of lipids in a diet. In this work, we aimed to elucidate the different effects of two high-fat diets on the histopathological and molecular characteristics of mammary tumors in an experimental model. Animals fed with a diet high in extra-virgin olive oil (EVOO), compared to those fed with a diet high in seed oil, developed tumors with less aggressiveness and proliferation. Tumor molecular analyses of several cell death pathways also suggested an effect of EVOO in this process. In vitro experiments indicated the role of EVOO minor compounds on the effects of this oil. Obtaining insights into the influence and the mechanisms of action of dietary compounds are necessary to understand the relevance that dietetic habits from childhood may have on health and the risk of disease. Abstract Breast cancer is the most common malignancy among women worldwide. Modifiable factors such as nutrition have a role in its etiology. In experimental tumors, we have observed the differential influence of high-fat diets in metabolic pathways, suggesting a different balance in proliferation/apoptosis. In this work, we analyzed the effects of a diet high in n-6 polyunsaturated fatty acids (PUFA) and a diet high in extra-virgin olive oil (EVOO) on the histopathological features and different cell death pathways in the dimethylbenz(a)anthracene-induced breast cancer model. The diet high in n-6 PUFA had a stimulating effect on the morphological aggressiveness of tumors and their proliferation, while no significant differences were found in groups fed the EVOO-enriched diet in comparison to a low-fat control group. The high-EVOO diet induced modifications in proteins involved in several cell death pathways. In vitro analysis in different human breast cancer cell lines showed an effect of EVOO minor compounds (especially hydroxytyrosol), but not of fatty acids, decreasing viability while increasing apoptosis. The results suggest an effect of dietary lipids on tumor molecular contexts that result in the modulation of different pathways, highlighting the importance of apoptosis in the interplay of survival processes and how dietary habits may have an impact on breast cancer risk.
Collapse
|
7
|
Moral R, Escrich E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020477. [PMID: 35056792 PMCID: PMC8780060 DOI: 10.3390/molecules27020477] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.
Collapse
|
8
|
Garcia-Guasch M, Navarro L, Rivero V, Costa I, Escrich E, Moral R. A high extra-virgin olive oil diet induces changes in metabolic pathways of experimental mammary tumors. J Nutr Biochem 2021; 99:108833. [PMID: 34339818 DOI: 10.1016/j.jnutbio.2021.108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide, and environmental factors, especially diet, have a role in the etiology of this disease. This work aimed to investigate the influence of high fat diets (rich in corn oil or extra virgin olive oil -EVOO-) and the timing of dietary intervention (from weaning or after induction) on tumor metabolism in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer model in rat. The effects of lipids (oils and fatty acids) have also been investigated in MCF-7 cells. The results have confirmed different effects on tumor progression depending on the type of lipid. Molecular analysis at mRNA, protein and activity level of enzymes of the main metabolic pathways have also shown differences among groups. Thus, the animals fed with the EVOO-enriched diet developed tumors with less degree of clinical and morphological malignancy and showed modified glucose and mitochondrial metabolism when compared to the animals fed with the corn oil-enriched diet. Paradoxically, no clear influence on lipid metabolism by the high fat diets was observed. Considering previous studies on proliferation and apoptosis in the same samples, the results suggest that metabolic changes have a role in the molecular context that results in the modulation of different signaling pathways. Moreover, metabolic characteristics, without the context of other pathways, may not reflect tumor malignancy. The time of dietary intervention plays also a role, suggesting the importance of metabolic plasticity and the relation with mammary gland status when the tumor is induced.
Collapse
Affiliation(s)
- Maite Garcia-Guasch
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Lourdes Navarro
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Vanessa Rivero
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Irmgard Costa
- Department of Pathology, Corporació Parc Taulí-UDIAT, 08208 Sabadell, Barcelona, Spain..
| | - Eduard Escrich
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Raquel Moral
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| |
Collapse
|
9
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
10
|
Aggarwal V, Kumar G, Aggarwal D, Yerer MB, Cumaoğlu A, Kumar M, Sak K, Mittal S, Tuli HS, Sethi G. Cancer preventive role of olives and olive oil via modulation of apoptosis and nuclear factor-kappa B activation. OLIVES AND OLIVE OIL IN HEALTH AND DISEASE PREVENTION 2021:377-388. [DOI: 10.1016/b978-0-12-819528-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
11
|
Deep frying cooking oils promote the high risk of metastases in the breast-A critical review. Food Chem Toxicol 2020; 144:111648. [PMID: 32745572 DOI: 10.1016/j.fct.2020.111648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Deep-frying is the most common food preparation method, manifestations of color, taste, flavor, and fried consistency. The beneficial role of vegetable oils become deteriorate when repeatedly treated with higher temperature and air. Repeatedly heated cooking oils (RCO) produce various byproducts, containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, well-known to be a carcinogenic, mutagenic, and tumorigenic properties. RCO is nowadays one of the often consumed media for cooking and frying, which intake can cause various unhealthy adverse effects including various cancer in the multiple organs. Hence, the present comprehensive study targets to provide the intake of RCO elevate the risks of human breast cancer. The data on RCO and its impacts were obtained via various electronic findings and library databases. Notable studies have confirmed that the effects of RCO have been attributed to their unfavorable effects, and underlying molecular mechanisms can also strongly promoting tumorigenic effects in the mammary organ.
Collapse
|
12
|
Escrich R, Vela E, Solanas M, Moral R. Effects of diets high in corn oil or in extra virgin olive oil on oxidative stress in an experimental model of breast cancer. Mol Biol Rep 2020; 47:4923-4932. [PMID: 32557190 DOI: 10.1007/s11033-020-05492-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023]
Abstract
Experimental evidence highlights the importance of dietetic factors on breast cancer. In this work we aimed to analyze the effects two oils, corn oil (rich in n-6 polyunsaturated fatty acids -PUFA-) and extra virgin olive oil (EVOO), on oxidative stress in an animal model of breast carcinogenesis. Female rats were fed a low-fat control, a high-corn oil, or a high-EVOO diet from weaning or after induction with 7,12-dimethylbenz[a]anthracene at 53 days. Animals were euthanized at 36, 51, 100 and 246 days of age. We analyzed antioxidant enzymes (mRNA and activity of superoxide dismutase, glutathione peroxidase and catalase), non-enzymatic capacity (oxidized and reduced glutathione) and DNA damage (8-oxo-dG) in tumors and mammary gland at different ages. We also analyzed lipid peroxidation (isoprostanes in serum and lipofuscin in liver). Results indicated a decrease in the enzymatic antioxidant capacity and increased oxidative stress in mammary gland of healthy young animals after a short period of high-fat diets intake, followed by an adaptation to chronic dietary intervention. After induction both diets, especially the one high in n-6 PUFA, increased the oxidized glutathione. In tumors no clear effects of the high-fat diets were observed, although in the long-term lipofuscin and 8-oxo-dG suggested greater oxidative damage by effect of the n-6 PUFA-rich diet. Considering the differential effects of these diets on mammary carcinogenesis that we have previously reported, this study suggests that these high-fat diets could have an effect on oxidative stress that would lead to different signaling pathways.
Collapse
Affiliation(s)
- Raquel Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barceona, Bellaterra, 08193, Barcelona, Spain
| | - Elena Vela
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barceona, Bellaterra, 08193, Barcelona, Spain
| | - Montserrat Solanas
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barceona, Bellaterra, 08193, Barcelona, Spain.
| | - Raquel Moral
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barceona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
13
|
Fang H, Jiang W, Jing Z, Mu X, Xiong Z. miR-937 regulates the proliferation and apoptosis via targeting APAF1 in breast cancer. Onco Targets Ther 2019; 12:5687-5699. [PMID: 31410016 PMCID: PMC6645689 DOI: 10.2147/ott.s207091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Previous research had shown that an imbalance in cell proliferation and apoptosis is a vital mechanism for tumorigenesis and cancer progression that may directly influence biological behaviors of cancer. microRNAs are associated with the occurrence and development of tumors. This study aimed to explore the influence of miR-937 on breast cancer regulation of APAF1 expression. Methods: Cancer Genome Altas microarray analysis (fold change > 2, p<0.05) was used to verify differentially expressed microRNAs and RT-qPCR was used to detect miR-937 mRNA level in breast cancer. Cell viability and proliferation were measured using CCK8 and colony formation assays, respectively, after the miR-937 mimics/inhibitors and their negative control were transfected into MCF7 cells. The variations in cell cycle and apoptosis were examined using flow cytometry. DAVID database was used to perform GO enrichment analysis. We use dual luciferase report system to detect the effect of miR-937 on the transcriptional activity of APAF1. APAF1 protein level was determined by Western blot assay. Results: miR-937 was up-regulated in breast cancer cell lines and high miR-937 expression is associated with a poorer survival rate in cancer patients. miR-937 overexpression promoted the viability, down-regulated the G1 phase ratios and increased the ability of colony formation in breast cancer cells. miR-937 inhibition inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. Our results showed that miR-937 targeted bind to the APAF1-3'UTR. APAF1 overexpression inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. After cells were co-transfection miR-937 mimics and APAF1, cell apoptosis level was increased. Conclusion: APAF1 up-regulation or APAF1 down-regulation in breast cancer may regulate cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Huiying Fang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Wei Jiang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhouhong Jing
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Xiaosong Mu
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhongxun Xiong
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| |
Collapse
|
14
|
Escrich R, Cubedo M, Escrich E, Moral R. Gene ontology analysis of transcriptome data from DMBA-induced mammary tumors of rats fed a high-corn oil and a high-extra virgin olive oil diet. Data Brief 2018; 22:104-108. [PMID: 30581912 PMCID: PMC6297851 DOI: 10.1016/j.dib.2018.11.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and dietary lipids are important environmental factors influencing its etiology. In this work we present data in relation to the transcriptional effects of two high-fat diets, one high in corn oil (HCO) and one high in extra-virgin olive oil (HOO), administered from weaning or after induction, on 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumors. Raw data were deposited at ArrayExpress under accession number E-MTAB-3541. We compared the gene expression profiles of the mammary tumors from the high-fat diet groups with those from the control group, finding different effects of diets depending on timing and type of dietary intervention. Lists of differentially expressed genes were analyzed to find overrepresented categories of biological significance. Here we provide information about the cell functions categories overrepresented in significantly modulated genes by effect of the high-fat diets. Further investigations of such functions are described in “A high corn oil diet strongly stimulates mammary carcinogenesis, while a high extra virgin olive oil diet has a weak effect, through changes in metabolism, immune system function, and proliferation/apoptosis pathways” (Escrich et al., in press) [1].
Collapse
Affiliation(s)
- Raquel Escrich
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marta Cubedo
- Department of Statistics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eduard Escrich
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Raquel Moral
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|