1
|
Boudry G, Cahu A, Romé V, Janvier R, Louvois M, Catheline D, Rioux V, Le Huërou-Luron I, Blat S. The ghrelin system follows a precise post-natal development in mini-pigs that is not impacted by dietary medium chain fatty-acids. Front Physiol 2022; 13:1010586. [PMID: 36225304 PMCID: PMC9549131 DOI: 10.3389/fphys.2022.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The ghrelin-ghrelin receptor (GHSR1) system is one of the most important mechanisms regulating food intake and energy balance. To be fully active, ghrelin is acylated with medium-chain fatty acids (MCFA) through the ghrelin-O-acetyl transferase (GOAT). Several studies reported an impact of dietary MCFA on ghrelin acylation in adults. Our study aimed at describing early post-natal development of the ghrelin system in mini-pigs as a model of human neonates and evaluating the impact of dietary MCFA. Suckled mini-pigs were sacrificed at post-natal day (PND) 0, 2, 5, and 10 or at adult stage. In parallel, other mini-pigs were fed from birth to PND10 a standard or a dairy lipid-enriched formula with increased MCFA concentration (DL-IF). Plasma ghrelin transiently peaked at PND2, with no variation of the acylated fraction except in adults where it was greater than during the neonatal period. Levels of mRNA coding pre-proghrelin (GHRL) and GOAT in the antrum did not vary during the post-natal period but dropped in adults. Levels of antral pcsk1/3 (cleaving GHRL into ghrelin) mRNA decreased significantly with age and was negatively correlated with plasma acylated, but not total, ghrelin. Hypothalamic ghsr1 mRNA did not vary in neonates but increased in adults. The DL-IF formula enriched antral tissue with MCFA but did not impact the ghrelin system. In conclusion, the ghrelin maturation enzyme PCSK1/3 gene expression exhibited post-natal modifications parallel to transient variations in circulating plasma ghrelin level in suckling piglets but dietary MCFA did not impact this post-natal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- *Correspondence: Gaëlle Boudry,
| | - Armelle Cahu
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Véronique Romé
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Margaux Louvois
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Daniel Catheline
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- Institut Agro, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- Institut Agro, Rennes, France
| | | | - Sophie Blat
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| |
Collapse
|
2
|
Sato T, Ida T, Shiimura Y, Matsui K, Oishi K, Kojima M. Insights Into the Regulation of Offspring Growth by Maternally Derived Ghrelin. Front Endocrinol (Lausanne) 2022; 13:852636. [PMID: 35250893 PMCID: PMC8894672 DOI: 10.3389/fendo.2022.852636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of fetal development by bioactive substances such as hormones and neuropeptides derived from the gestational mother is considered to be essential for the development of the fetus. On the other hand, it has been suggested that changes in the physiological state of the pregnant mother due to various factors may alter the secretion of these bioactive substances and induce metabolic changes in the offspring, such as obesity, overeating, and inflammation, thereby affecting postnatal growth and health. However, our knowledge of how gestational maternal bioactive substances modulate offspring physiology remains fragmented and lacks a systematic understanding. In this mini-review, we focus on ghrelin, which regulates growth and energy metabolism, to advance our understanding of the mechanisms by which maternally derived ghrelin regulates the growth and health of the offspring. Understanding the regulation of offspring growth by maternally-derived ghrelin is expected to clarify the fetal onset of metabolic abnormalities and lead to a better understanding of lifelong health in the next generation of offspring.
Collapse
Affiliation(s)
- Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- *Correspondence: Takahiro Sato, ; Masayasu Kojima,
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - Kanae Oishi
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- *Correspondence: Takahiro Sato, ; Masayasu Kojima,
| |
Collapse
|
3
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Dobrowolski P, Muszyński S, Donaldson J, Jakubczak A, Żmuda A, Taszkun I, Rycerz K, Mielnik-Błaszczak M, Kuc D, Tomaszewska E. The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring. Animals (Basel) 2021; 11:1468. [PMID: 34065327 PMCID: PMC8160670 DOI: 10.3390/ani11051468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prenatal and postnatal supplementation with β-hydroxy-β-methylbutyrate (HMB) and alpha-ketoglutaric acid (AKG) affects the development and maturation of offspring. Both substances have the potential to stimulate cell metabolism via different routes. However, parity affects development and may alter the effects of dietary supplementation. This study aimed to evaluate the effect of gestational supplementation with HMB and/or AKG to primiparous and multiparous minks on the structure and maturation of the offspring's small intestine. Primiparous and multiparous American minks (Neovison vison), of the standard dark brown type, were supplemented daily with HMB (0.02 g/kg b.w.) and/or AKG (0.4 g/kg b.w.) during gestation (n = 7 for each treatment). Supplementation stopped when the minks gave birth. Intestine samples were collected from 8-month-old male and female offspring during autopsy and histology and histomorphometry analysis was conducted (LAEC approval no 64/2015). Gestational supplementation had a long-term effect, improving the structure of the offspring's intestine toward facilitating absorption and passage of intestinal contents. AKG supplementation affected intestinal absorption (enterocytes, villi and absorptive surface), and HMB affected intestinal peristalsis and secretion (crypts and Goblet cells). These effects were strongly dependent on parity and offspring gender. Present findings have important nutritional implications and should be considered in feeding practices and supplementation plans in animal reproduction.
Collapse
Affiliation(s)
- Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Andrzej Jakubczak
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Andrzej Żmuda
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka St. 30, 20-612 Lublin, Poland;
| | - Iwona Taszkun
- Department and Clinic of Internal Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka St. 30, 20-612 Lublin, Poland;
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Chair and Department of Paedodontics, Medical University of Lublin, Karmelicka St. 7, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Chair and Department of Paedodontics, Medical University of Lublin, Karmelicka St. 7, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| |
Collapse
|