1
|
Mitra A, Das A, Ghosh S, Sarkar S, Bandyopadhyay D, Gangopadhyay S, Chattopadhyay S. Metformin instigates cellular autophagy to ameliorate high-fat diet-induced pancreatic inflammation and fibrosis/EMT in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167313. [PMID: 38901652 DOI: 10.1016/j.bbadis.2024.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chronic pancreatic dysfunction is frequently observed as a consequence of prolonged high-fat diet consumption and is a serious public health concern. This pro-diabetic insult aggravates inflammation-influenced fibrotic lesions and is associated with deregulated autophagy. Metformin, a conventional anti-hyperglycemic drug, might be beneficial for pancreatic health, but the complex molecular regulations are not clarified. Considering the worldwide prevalence of chronic pancreatic dysfunction in obese individuals, we aimed to unwind the molecular intricacies explaining the involvement of oxidative stress, inflammation and fibrosis and to approbate metformin as a plausible intervention in this crossroad. MAIN METHODS Age-matched Swiss Albino mice were exposed to high-fat diet (60 kcal%) against control diet (10 kcal%) to establish diet-induced stress model. Metformin treatment was introduced after 4 weeks to metformin-control and HFD-exposed metformin groups. After 8 weeks, metabolic and molecular outcomes were assessed to establish the impact of metformin on chronic consequences of HFD-mediated injury. KEY FINDINGS High-fat diet administration to healthy mice primes oxidative stress-mediated chronic inflammation through Nrf2/Keap1/NF-κB interplay. Besides, pro-inflammatory cytokine bias leading to fibrotic (increased TGF-β, α-SMA, and MMP9) and pro-EMT (Twist1, Slug, Vimentin, E-cadherin) repercussions in pancreatic lobules were evident. Metformin distinctly rescues high-fat diet-induced remodeling of pancreatic pro-diabetic alterations and cellular survival/death switch. Further, metformin abrogates the p62-Twist1 crosstalk in an autophagy-dependent manner (elevated beclin1, LC3-II/I, Lamp2) to restore pancreatic homeostasis. CONCLUSION Our research validates the therapeutic potential of metformin in the inflammation-fibrosis nexus to ameliorate high-fat diet-induced pancreatic dysfunction and related metabolic alterations.
Collapse
Affiliation(s)
- Ankan Mitra
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Ankur Das
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Debasish Bandyopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Somnath Gangopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098, West Bengal, India.
| |
Collapse
|
2
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
3
|
Das N, Mukherjee S, Das A, Gupta P, Bandyopadhyay A, Chattopadhyay S. Intra-tumor ROS amplification by melatonin interferes in the apoptosis-autophagy-inflammation-EMT collusion in the breast tumor microenvironment. Heliyon 2024; 10:e23870. [PMID: 38226217 PMCID: PMC10788523 DOI: 10.1016/j.heliyon.2023.e23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention. Contrary to its conventional antioxidant role, melatonin was shown to augment intracellular ROS and initiate ROS-dependent apoptosis in our system, by modulating the p53/JNK & NF-κB/pJNK expressions/interactions. Melatonin-induced ROS promoted SIRT1 activity. Interplay between SIRT1 and NF-κB/p65 is known to play a pivotal role in regulating the crosstalk between autophagy and inflammation. Persistent inflammation in the tumor microenvironment and subsequent activation of the IL-6/STAT3/NF-κB feedback loop promoted EMT and suppression of autophagy through activation of PI3K/Akt/mTOR signaling pathway. Melatonin disrupted NF-κB/SIRT1 interactions blocking IL-6/STAT3/NF-κB pathway. This led to reversal of pro-inflammatory bias in the breast tumor microenvironment and augmented autophagic responses. The interactions between p62/Twist1, NF-κB/Beclin1 and NF-κB/Slug were altered by melatonin to strike a balance between autophagy, inflammation and EMT, leading to tumor regression. This study provides critical insights into how melatonin could be utilized in treating breast cancer via inhibition of the PI3K/Akt/mTOR signaling and differential modulation of SIRT1 and NF-κB proteins, leading to the establishment of apoptotic and autophagic fates in breast cancer cells.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sudeshna Mukherjee
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Department of Physiology and Allied Sciences, Amity Institute of Health Allied Sciences, Amity University, Uttar Pradesh, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Amit Bandyopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata-700098, India
| |
Collapse
|
4
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
5
|
Verdú D, Valls A, Díaz A, Carretero A, Dromant M, Kuligowski J, Serna E, Viña J. Pomegranate Extract Administration Reverses Loss of Motor Coordination and Prevents Oxidative Stress in Cerebellum of Aging Mice. Antioxidants (Basel) 2023; 12:1991. [PMID: 38001844 PMCID: PMC10669012 DOI: 10.3390/antiox12111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The cerebellum is responsible for complex motor functions, like maintaining balance and stance, coordination of voluntary movements, motor learning, and cognitive tasks. During aging, most of these functions deteriorate, which results in falls and accidents. The aim of this work was to elucidate the effect of a standardized pomegranate extract during four months of supplementation in elderly mice to prevent frailty and improve the oxidative state. Male C57Bl/6J eighteen-month-old mice were evaluated for frailty using the "Valencia Score" at pre-supplementation and post-supplementation periods. We analyzed lipid peroxidation in the cerebellum and brain cortex and the glutathione redox status in peripheral blood. In addition, a set of aging-related genes in cerebellum and apoptosis biomarkers was measured via real-time polymerase chain reaction (RT-PCR). Our results showed that pomegranate extract supplementation improved the motor skills of C57Bl/6J aged mice in motor coordination, neuromuscular function, and monthly weight loss, but no changes in grip strength and endurance were found. Furthermore, pomegranate extract reversed the increase in malondialdehyde due to aging in the cerebellum and increased the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the blood. Finally, aging and apoptosis biomarkers improved in aged mice supplemented with pomegranate extract in the cerebellum but not in the cerebral cortex.
Collapse
Affiliation(s)
- David Verdú
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Alicia Valls
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Ana Díaz
- Central Unit for Research in Medicine (UCIM), University of Valencia, 46010 Valencia, Spain
| | - Aitor Carretero
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Mar Dromant
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLaFe), 46026 Valencia, Spain
| | - Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - José Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
6
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Mukherjee S, Gupta P, Ghosh S, Choudhury S, Das A, Ahir M, Adhikary A, Chattopadhyay S. Targeted tumor killing by pomegranate polyphenols: Pro-oxidant role of a classical antioxidant. J Nutr Biochem 2023; 115:109283. [PMID: 36791995 DOI: 10.1016/j.jnutbio.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
One of the key biochemical features that distinguish a cancer cell from normal cells is its persistent pro-oxidative state that leads to intrinsic oxidative stress. Malignant cells have evolved sophisticated adaptation systems that involve high dependency on antioxidant functions and upregulation of pro-survival molecules to counteract the deleterious effects of reactive species and to maintain dynamic redox balance. This situation renders them vulnerable to further oxidative challenges by exogenous agents. In the present study, we advocated that pomegranate polyphenols act as pro-oxidants and trigger ROS-mediated apoptosis in cancer cells. With the help of both in vitro and in vivo models, we have established that pomegranate fruit extract (PFE) can cause a significant reduction in tumor proliferation while leaving normal tissues and cells unharmed. Administration of PFE (0.2% v/v) in Erhlich's ascites carcinoma-bearing mice for 3 weeks, inhibited the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling cascade, increased intracellular reactive oxygen species content, altered glutathione cycle thereby activating reactive oxygen species-induced apoptotic pathway in Erhlich's ascites carcinoma cells. Moreover, PFE mitigated epithelial to mesenchymal transition and migration in triple negative breast cancer cells (MDA-MB 231 cells) by down-regulating nuclear factor kappa light-chain-enhancer of activated B cells. Pre-treatment of tumor cells with N-acetyl cysteine protected these cells from undergoing PFE-induced apoptosis while siRNA-mediated silencing of Nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa light-chain-enhancer of activated B cells in tumor cells increased the cytotoxic potential and pro-oxidative activity of PFE, indicating a clear role of these transcription factors in orchestrating the anticancer/pro-oxidative properties of PFE. The seminal findings provided may be exploited to develop potential therapeutic targets for selective killing of malignant cells.
Collapse
Affiliation(s)
| | - Payal Gupta
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India.
| |
Collapse
|
8
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
9
|
Dong Q, Chen J, Jiang YP, Zhu ZP, Zheng YF, Zhang JM, Zhang Z, Chen WQ, Sun SY, Pang L, Yan X, Liao W, Fu CM. Integrating Network Analysis and Metabolomics to Reveal Mechanism of Huaganjian Decoction in Treatment of Cholestatic Hepatic Injury. Front Pharmacol 2022; 12:773957. [PMID: 35126117 PMCID: PMC8807561 DOI: 10.3389/fphar.2021.773957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/14/2022] Open
Abstract
Huaganjian decoction (HGJD) was first recorded in the classic "Jing Yue Quan Shu" during the Ming dynasty, and it has been extensively applied in clinical practice to treat liver diseases for over 300 years in China. However, its bioactive constituents and relevant pharmacological mechanism are still unclear. In this study, a strategy integrating network analysis and metabolomics was applied to reveal mechanism of HGJD in treating cholestatic hepatic injury (CHI). Firstly, we observed the therapeutic effect of HGJD against CHI with an alpha-naphthylisothiocyanate (ANIT) induced CHI rat model. Then, we utilized UPLC-Q-Exactive MS/MS method to analyze the serum migrant compounds of HGJD in CHI rats. Based on these compounds, network analysis was conducted to screen for potential active components, and key signaling pathways interrelated to therapeutic effect of HGJD. Meanwhile, serum metabolomics was utilized to investigate the underlying metabolic mechanism of HGJD against CHI. Finally, the predicted key pathway was verified by western blot and biochemical analysis using rat liver tissue from in vivo efficacy experiment. Our results showed that HGJD significantly alleviated ANIT induced CHI. Totally, 31 compounds originated from HGJD have been identified in the serum sample. PI3K/Akt/Nrf2 signaling pathway related to GSH synthesis was demonstrated as one of the major pathways interrelated to therapeutic effect of HGJD against CHI. This research supplied a helpful strategy to determine the potential bioactive compounds and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qin Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ping Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Feng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Ming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Qing Chen
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shi-Yi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao-Mei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Xu J, Cao K, Liu X, Zhao L, Feng Z, Liu J. Punicalagin Regulates Signaling Pathways in Inflammation-Associated Chronic Diseases. Antioxidants (Basel) 2021; 11:29. [PMID: 35052533 PMCID: PMC8773334 DOI: 10.3390/antiox11010029] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation is a complex biological defense system associated with a series of chronic diseases such as cancer, arthritis, diabetes, cardiovascular and neurodegenerative diseases. The extracts of pomegranate fruit and peel have been reported to possess health-beneficial properties in inflammation-associated chronic diseases. Punicalagin is considered to be the major active component of pomegranate extracts. In this review we have focused on recent studies into the therapeutic effects of punicalagin on inflammation-associated chronic diseases and the regulatory roles in NF-κB, MAPK, IL-6/JAK/STAT3 and PI3K/Akt/mTOR signaling pathways. We have concluded that punicalagin may be a promising therapeutic compound in preventing and treating inflammation-associated chronic diseases, although further clinical studies are required.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
- University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
11
|
Liang H, Xu C, Hu S, Wen G, Lin J, Liu T, Xu J. Repetitive Transcranial Magnetic Stimulation Improves Neuropathy and Oxidative Stress Levels in Rats with Experimental Cerebral Infarction through the Nrf2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3908677. [PMID: 34531917 PMCID: PMC8440076 DOI: 10.1155/2021/3908677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Ischemic stroke poses a serious threat to human health. Its high morbidity, disability, and lethality rates have led to it being a research hotspot. Cerebral ischemia reperfusion injury is a difficult point in the treatment of ischemic stroke. In recent years, studies have shown that repeated transcranial magnetic stimulation (rTMS) can enhance cerebral ischemic tolerance and have a significant protective effect on reperfusion injury after ischemia, but its specific mechanism is unknown. The Nrf2/pathway plays a vital role in ischemia-reperfusion injury in the body environment. Therefore, in this experiment, the middle cerebral artery occlusion (MCAO) reperfusion model of SD rats was made to simulate the occurrence of experimental cerebral infarction by the suture method. After treatment with rTMS, it was studied whether it can regulate the expression of Nrf2 and HO-1, affect the content of MDA and SOD activity, and then activate the Nrf2 pathway to exert its brain protection. The results showed that after MCAO reperfusion, the neurological deficit score of rats increased, and the time to remove the bilateral stickers and the time to cross the balance beam increased, suggesting the successful establishment of the experimental cerebral infarction model. Detecting the brain tissue of experimental cerebral infarction rats found that the expression of Nrf2 and HO-1 decreased, the content of MDA increased, and the activity of SOD decreased. After rTMS treatment, the neuromotor function of experimental cerebral infarction rats improved, the expression of Nrf2 and HO-1 in the brain tissue gradually increased, the content of MDA decreased, and the activity of SOD increased. It indicates that the expression of Nrf2 and HO-1 in experimental cerebral infarction rats is reduced. After treatment with rTMS, it can improve the neuromotor function damage of the rats and reduce the level of oxidative stress. The mechanism may be through promoting the activation of the Nrf2 signaling pathway, acting on the expression of antioxidant proteins, such as HO-1 and SOD1, reducing oxidative stress damage, and playing a protective effect on brain tissue.
Collapse
Affiliation(s)
- Hui Liang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Congjie Xu
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Gang Wen
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie Lin
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Jiyi Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| |
Collapse
|