1
|
Chang X, Zhang Z, Yao X, Meng J, Ren W, Zeng Y. Lipidomics and biochemical profiling of adult Yili horses in a 26 km endurance race: exploring metabolic adaptations. Front Vet Sci 2025; 12:1597739. [PMID: 40331217 PMCID: PMC12052713 DOI: 10.3389/fvets.2025.1597739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The equine lipid metabolism is activated during and after endurance exercise to provide energy in response to the metabolic and physiological changes in the body caused by prolonged exercise; however, the specific regulatory mechanisms remain controversial and identifying differential lipid metabolites associated with equine endurance is essential to elucidate these regulatory mechanisms. In this study, blood samples for lipid metabolomic analysis and biochemical indices were collected before and after a 26 km race from 12 Yili horses with different endurance performance. The biochemical results showed that: the albumin (ALB) level was significantly higher in the general group than in the excellent group before the competition, but significantly lower in the ordinary group after the competition (p < 0.05); the pre-competition alanine aminotransferase (ALT) in the excellent group was significantly higher than that of the general group (p < 0.05); and the urea nitrogen (BUN) in the general group was significantly higher than that of the excellent group after the competition (p < 0.05). The lipid metabolism results showed that a total of 1,537 lipid differential metabolites were obtained, mainly enriched in the pathways of fatty acid biosynthesis, cortisol synthesis and secretion, bile secretion, aldosterone regulation of sodium reabsorption, biotin metabolism, steroid hormone biosynthesis, and neuroactive ligand-receptor interactions. Metabolomics and biochemical correlation analyses screened PC (18:3/18:4) and PI (18:1/18:2) as potential biomarkers to identify endurance performance in Yili horses. The results of this study provide a solid foundation for improving equine racing performance and for the selection and breeding of endurance horses by providing a comprehensive reference on the mechanisms of lipid metabolism in equine endurance.
Collapse
Affiliation(s)
- Xiaokang Chang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zihan Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| |
Collapse
|
2
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024; 187:1177-1190.e18. [PMID: 38366593 PMCID: PMC10940216 DOI: 10.1016/j.cell.2024.01.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY 10027, USA
| | - Carla T Bezjian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Zhao W, Wang Y, Liu X, Wang Y, Yuan X, Zhao G, Cui H. Multi-Omics Analysis of Genes Encoding Proteins Involved in Alpha-Linolenic Acid Metabolism in Chicken. Foods 2023; 12:3988. [PMID: 37959108 PMCID: PMC10648152 DOI: 10.3390/foods12213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alpha-linolenic acid (ALA, ω-3) is an antioxidant that reduces triglyceride (TG) levels in blood, a component of cell membranes and a precursor compound of eicosapentaenoic acid (EPA, ω-3) and eicosatrienoic acid (DHA, ω-3). Fatty acid content is a quantitative trait regulated by multiple genes, and the key genes regulating fatty acid metabolism have not been systematically identified. This study aims at investigating the protein-encoding genes regulating ω-3 polyunsaturated fatty acid (PUFA) content in chicken meat. We integrated genomics, transcriptomics and lipidomics data of Jingxing yellow chicken (JXY) to explore the interactions and associations among multiple genes involved in the regulation of fatty acid metabolism. Several key genes and pathways regulating ω-3 fatty acid metabolism in chickens were identified. The upregulation of GRB10 inhibited the mTOR signaling pathway, thereby improving the content of EPA and DHA. The downregulation of FGFR3 facilitated the conversion of ALA to EPA. Additionally, we analyzed the effects of ALA supplementation dose on glycerol esters (GLs), phospholipid (PL) and fatty acyl (FA) contents, as well as the regulatory mechanisms of nutritional responses in FFA metabolism. This study provides a basis for identifying genes and pathways that regulate the content of FFAs, and offers a reference for nutritional regulation systems in production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanxian Cui
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Institute of Animal Science, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (Y.W.); (X.L.); (Y.W.); (X.Y.); (G.Z.)
| |
Collapse
|
4
|
Cambiaggi L, Chakravarty A, Noureddine N, Hersberger M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076110. [PMID: 37047085 PMCID: PMC10093787 DOI: 10.3390/ijms24076110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
α-linolenic acid (ALA) is an essential C-18 n-3 polyunsaturated fatty acid (PUFA), which can be elongated to longer n-3 PUFAs, such as eicosapentaenoic acid (EPA). These long-chain n-3 PUFAs have anti-inflammatory and pro-resolution effects either directly or through their oxylipin metabolites. However, there is evidence that the conversion of ALA to the long-chain PUFAs is limited. On the other hand, there is evidence in humans that supplementation of ALA in the diet is associated with an improved lipid profile, a reduction in the inflammatory biomarker C-reactive protein (CRP) and a reduction in cardiovascular diseases (CVDs) and all-cause mortality. Studies investigating the cellular mechanism for these beneficial effects showed that ALA is metabolized to oxylipins through the Lipoxygenase (LOX), the Cyclooxygenase (COX) and the Cytochrome P450 (CYP450) pathways, leading to hydroperoxy-, epoxy-, mono- and dihydroxylated oxylipins. In several mouse and cell models, it has been shown that ALA and some of its oxylipins, including 9- and 13-hydroxy-octadecatrienoic acids (9-HOTrE and 13-HOTrE), have immunomodulating effects. Taken together, the current literature suggests a beneficial role for diets rich in ALA in human CVDs, however, it is not always clear whether the described effects are attributable to ALA, its oxylipins or other substances present in the supplemented diets.
Collapse
Affiliation(s)
- Lucia Cambiaggi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Akash Chakravarty
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|