1
|
Migni A, Bartolini D, Varfaj I, Moscardini IF, Sardella R, Garetto S, Lucci J, Galli F. Lipidomics reveals different therapeutic potential for natural and synthetic vitamin D formulations in hepatocyte lipotoxicity. Biomed Pharmacother 2025; 187:118068. [PMID: 40300390 DOI: 10.1016/j.biopha.2025.118068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Natural sources of vitamin D (VD), have been proposed to represent an alternative to synthetic vitamin D in nutritional interventions, also holding therapeutic potential in non-alcoholic fatty liver disease (NAFLD). In this study lipidomics was used to comparatively investigate the molecular mechanisms behind the therapeutic effects of a natural VD formulation consisting of a Shitake mushroom extracts (NVD) and a synthetic cholecalciferol formulation (SVD) in HepaRG human hepatocytes exposed to free fatty acid (FFA)-induced lipotoxicity. The results demonstrate that the two VD formulations prevent lipotoxicity with similar efficacy, but different lipidomic fingerprints. Differentially expressed lipids in NVD' in vitro therapeutic effect indicated a reduced synthesis of cellular triglycerides; combined with a marked reshaping of glycerophospholipid metabolism and characteristic changes of the chain length and number of double bonds in the phosphatidylcholine pool that were absent in SVD treatment. Bioinformatics interpretation of lipidomics data associated NVD therapeutic properties to an enhanced insulin function and glycerophospholipid metabolism, whereas SVD was primarily associated with the inflammatory signaling and death pathways of the liver cell. These differences between the two VD formulations were further highlighted matching lipidomics data with gene microarray (transcriptomics) data available from previous studies on this experimental model; the resulting multiomics data identified lipid metabolism nodes specific for the multimolecular mechanisms of the two formulations which may deserve further pre-clinical investigation in the treatment of hepatocyte lipotoxicity.
Collapse
Affiliation(s)
- Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Umbria, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Umbria, Italy
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Umbria, Italy
| | | | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Umbria, Italy
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems For Health S.p.A, Loc. Aboca 20, Sansepolcro, Arezzo, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems For Health S.p.A, Loc. Aboca 20, Sansepolcro, Arezzo, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Umbria, Italy.
| |
Collapse
|
2
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
3
|
Iwaki M, Kanemoto Y, Sawada T, Nojiri K, Kurokawa T, Tsutsumi R, Nagasawa K, Kato S. Differential gene regulation by a synthetic vitamin D receptor ligand and active vitamin D in human cells. PLoS One 2023; 18:e0295288. [PMID: 38091304 PMCID: PMC10718451 DOI: 10.1371/journal.pone.0295288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin D (VD) exerts a wide variety of biological functions including calcemic activity. VD nutritional status is closely associated with the onset and development of chronic diseases. To develop a VD analog with the desired VD activity but without calcemic activity, we screened synthetic VDR antagonists. We identified 1α,25-dihydroxyvitamin D3-26-23-lactams (DLAM)-2a-d (DLAM-2s) as nuclear vitamin D receptor (VDR) ligands in a competitive VDR binding assay for 1α,25(OH)2 vitamin D3 (1α,25(OH)2D3), and DLAM-2s showed an antagonistic effect on 1α,25(OH)2 D3-induced cell differentiation in HL60 cells. In a luciferase reporter assay in which human VDR was exogenously expressed in cultured COS-1 cells, DLAM-2s acted as transcriptional antagonists. Consistently, DLAM-2s had an antagonistic effect on the 1α,25(OH)2D3-induced expression of a known VD target gene [Cytochrome P450 24A1 (CYP24A1)], and VDR bound DLAM-2s was recruited to an endogenous VD response element in chromatin in human keratinocytes (HaCaT cells) endogenously expressing VDR. In an ATAC-seq assay, the effects of 1α,25(OH)2 D3 and DLAM-2b on chromatin reorganization were undetectable in HaCaT cells, while the effect of an androgen receptor (AR) antagonist (bicalutamide) was confirmed in prostate cancer cells (LNCaP) expressing endogenous AR. However, whole genome analysis using RNA-seq and ATAC (Assay for Transposase Accessible Chromatin)-seq revealed differential gene expression profiles regulated by DLAM-2b versus 1α,25(OH)2D3. The upregulated and downregulated genes only partially overlapped between cells treated with 1α,25(OH)2D3 and those treated with DLAM-2b. Thus, the present findings illustrate a novel VDR ligand with gene regulatory activity differing from that of 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Miho Iwaki
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Takahiro Sawada
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Koki Nojiri
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Tomohiro Kurokawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Rino Tsutsumi
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kazuo Nagasawa
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Migni A, Mancuso F, Baroni T, Di Sante G, Rende M, Galli F, Bartolini D. Melatonin as a Repairing Agent in Cadmium- and Free Fatty Acid-Induced Lipotoxicity. Biomolecules 2023; 13:1758. [PMID: 38136629 PMCID: PMC10741790 DOI: 10.3390/biom13121758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Cadmium (Cd) is a potentially toxic element with a long half-life in the human body (20-40 years). Cytotoxicity mechanisms of Cd include increased levels of oxidative stress and apoptotic signaling, and recent studies have suggested that these aspects of Cd toxicity contribute a role in the pathobiology of non-alcoholic fatty liver disease (NAFLD), a highly prevalent ailment associated with hepatic lipotoxicity and an increased generation of reactive oxygen species (ROS). In this study, Cd toxicity and its interplay with fatty acid (FA)-induced lipotoxicity have been studied in intestinal epithelium and liver cells; the cytoprotective function of melatonin (MLT) has been also evaluated. (2) Methods: human liver cells (HepaRG), primary murine hepatocytes and Caco-2 intestinal epithelial cells were exposed to CdCl2 before and after induction of lipotoxicity with oleic acid (OA) and/or palmitic acid (PA), and in some experiments, FA was combined with MLT (50 nM) treatment. (3) Results: CdCl2 toxicity was associated with ROS induction and reduced cell viability in both the hepatic and intestinal cells. Cd and FA synergized to induce lipid droplet formation and ROS production; the latter was higher for PA compared to OA in liver cells, resulting in a higher reduction in cell viability, especially in HepaRG and primary hepatocytes, whereas CACO-2 cells showed higher resistance to Cd/PA-induced lipotoxicity compared to liver cells. MLT showed significant protection against Cd toxicity either considered alone or combined with FFA-induced lipotoxicity in primary liver cells. (4) Conclusions: Cd and PA combine their pro-oxidant activity to induce lipotoxicity in cellular populations of the gut-liver axis. MLT can be used to lessen the synergistic effect of Cd-PA on cellular ROS formation.
Collapse
Affiliation(s)
- Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Gabriele Di Sante
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|