1
|
Franzolin AML, Fioretto MN, Ribeiro IT, Maciel FA, Barata LA, Vitali PM, Magosso N, Fagundes FL, Emílio-Silva MT, Hiruma Lima CA, Scarano WR, Justulin LA. Maternal protein restriction compromises hepatic phenotype and antioxidant defense in postweaning male rats, while females exhibit resilience. Biochem Biophys Res Commun 2025; 766:151873. [PMID: 40300334 DOI: 10.1016/j.bbrc.2025.151873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that maternal malnutrition can program offspring for dysfunction of multiple systems, including the liver. Maternal Protein Restriction (MPR) is a maternal malnutrition model that dysregulates catabolic hormones early in life, with long-term consequences on offspring such as hypertension and reproductive system cancers. Furthermore, studies evaluating sex-specific differences are scarce, especially considering the consequences of MPR on early life. Here, we investigated the impacts of MPR on hepatic phenotypic and molecular aspects of male and female rats at postnatal day (PND)21. The rats were divided into two groups: CTR, from dams that consumed a normal-protein diet (17 % protein), or GLLP, from dams that consumed a low-protein diet (6 % protein) throughout gestation and lactation. Our results demonstrated that MPR leads to an increase in collagen fibers, glycogen, and peroxiredoxin 1, in addition to a decrease in reticular fibers, mast cells, GSH, and MDA in the liver of male rats. In females, a reduction of reticular fibers and protein expression of hepatic peroxiredoxin 4 was observed. By contrasting these results with in silico analyses, we suggest that the main altered mechanisms in males are associated with oxidative stress, glycogen metabolism, and inflammatory responses. In females, a subtle dysregulation of antioxidant activity within the extracellular matrix was noted. Therefore, this work demonstrates sex-specific hepatic differences in post-weaning rats exposed to MPR, highlighting possible maternal modulations that lead males to be more affected, which may generate long-term effects on hepatic and systemic health.
Collapse
Affiliation(s)
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Pedro Menchini Vitali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Natália Magosso
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Felipe Leonardo Fagundes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Ren Y, Wang F, Sun R, Zhang Y, Zheng X, Liu H, Chen L, Lin Y, Zhao Y, Liang M, Chao Z. N-glycosylation Modification Reveals Insights into the Oxidative Reactions of Liver in Wuzhishan Pigs. Molecules 2024; 29:5222. [PMID: 39598613 PMCID: PMC11596063 DOI: 10.3390/molecules29225222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Although porcine liver contributes to their growth and development by nutrition production and energy supply, oxidative stress-induced hepatocyte damage is inevitable during metabolism. N-glycosylation is a common modification in oxidation; nevertheless, the effects of N-glycosylation on pig liver oxidative reactions remain undefined. In this study, liver proteins with N-glycosylation were detected in Wuzhishan (WZS) pigs between 4 and 8 months old and Large White (LW) pigs at 4 months old based on LC-MS/MS. The results showed that the number of differentially expressed proteins (DEPs) was larger between different pig cultivars than that between WZS pigs at various growth periods. The enriched pathways of DEPs were mainly related to oxidative reactions, and 10 proteins were finally selected that primarily consisted of CYPs, GSTs and HSPs with expressions significantly correlating to liver size and weight. The oxidative genes shared N-glycosylation-modified models of N-x-S and N-G. Five out of 10 proteins were upregulated in WZS pigs compared to LW pigs at 4 months old, while five proteins increased in WZS pigs from 4 to 8 months old. In conclusion, this research provides valuable information on the N-glycosylation motifs in liver oxidation genes of WZS pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
3
|
Wang Y, Yi K, Chen B, Zhang B, Jidong G. Elucidating the susceptibility to breast cancer: an in-depth proteomic and transcriptomic investigation into novel potential plasma protein biomarkers. Front Mol Biosci 2024; 10:1340917. [PMID: 38304232 PMCID: PMC10833003 DOI: 10.3389/fmolb.2023.1340917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Objectives: This study aimed to identify plasma proteins that are associated with and causative of breast cancer through Proteome and Transcriptome-wide association studies combining Mendelian Randomization. Methods: Utilizing high-throughput datasets, we designed a two-phase analytical framework aimed at identifying novel plasma proteins that are both associated with and causative of breast cancer. Initially, we conducted Proteome/Transcriptome-wide association studies (P/TWAS) to identify plasma proteins with significant associations. Subsequently, Mendelian Randomization was employed to ascertain the causation. The validity and robustness of our findings were further reinforced through external validation and various sensitivity analyses, including Bayesian colocalization, Steiger filtering, heterogeneity and pleiotropy. Additionally, we performed functional enrichment analysis of the identified proteins to better understand their roles in breast cancer and to assess their potential as druggable targets. Results: We identified 5 plasma proteins demonstrating strong associations and causative links with breast cancer. Specifically, PEX14 (OR = 1.201, p = 0.016) and CTSF (OR = 1.114, p < 0.001) both displayed positive and causal association with breast cancer. In contrast, SNUPN (OR = 0.905, p < 0.001), CSK (OR = 0.962, p = 0.038), and PARK7 (OR = 0.954, p < 0.001) were negatively associated with the disease. For the ER-positive subtype, 3 plasma proteins were identified, with CSK and CTSF exhibiting consistent trends, while GDI2 (OR = 0.920, p < 0.001) was distinct to this subtype. In ER-negative subtype, PEX14 (OR = 1.645, p < 0.001) stood out as the sole protein, even showing a stronger causal effect compared to breast cancer. These associations were robustly supported by colocalization and sensitivity analyses. Conclusion: Integrating multiple data dimensions, our study successfully pinpointed plasma proteins significantly associated with and causative of breast cancer, offering valuable insights for future research and potential new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Yi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyue Chen
- Department of General Surgery, Beijing Puren Hospital, Beijing, China
| | - Bailin Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao Jidong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|