1
|
Jiang S, Shu Y, Guo S, Ni Y, Zhao R, Shan H, Ma W. Proteomics-Based Exploration of the Hepatoprotective Mechanism of α-Lipoic Acid in Rats with Iron Overload-Induced Liver Injury. Int J Mol Sci 2025; 26:4774. [PMID: 40429916 PMCID: PMC12112492 DOI: 10.3390/ijms26104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Excessive iron accumulation poses a significant threat to liver health, primarily through oxidative stress and autophagy dysregulation. α-Lipoic acid (ALA), a natural antioxidant with hepatoprotective properties, may alleviate iron-induced liver damage, but its underlying mechanisms are not fully understood. This study utilized male Sprague Dawley rats and BRL-3A cells to explore the protective effects of ALA against iron overload in vivo and in vitro, respectively. ALA treatment significantly reduced hepatic iron accumulation, improved liver morphology, and alleviated iron-induced ultrastructural damage in rats. ALA also improved liver function markers in plasma, including alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), and the AST/ALT ratio. Furthermore, ALA mitigated iron-induced oxidative stress by lowering hepatic reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing the antioxidant enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). In BRL-3A cells, ALA improved cell viability, decreased intracellular ROS, and reduced iron levels. Proteomics analysis indicates that NAD(P)H: quinone oxidoreductase 1 (NQO1) may play a critical role in the protective effects of ALA against iron overload-induced hepatic damage in rats. Mechanistically, ALA upregulated NQO1 expression while downregulating autophagy-related proteins, including light chain 3B (LC3B), lysosomal-associated membrane protein 1 (LAMP1), and cathepsin D (CTSD). Inhibition or knockdown of NQO1 abolished ALA's protective effects, confirming its role in reducing oxidative stress and excessive autophagy. These findings highlight the potential of ALA as a therapeutic agent for managing hepatic iron toxicity through iron chelation and activation of NQO1.
Collapse
Affiliation(s)
- Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2025; 61:178-188. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|