1
|
Horváth G, Herczeg D, Kovács B, Péntek Á, Kaczur B, Herczeg G. Microplastic uptake with food increases risk-taking of a wide-spread decomposer, the common pill bug Armadillidium vulgare. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126220. [PMID: 40210158 DOI: 10.1016/j.envpol.2025.126220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Exposure to microplastics (MPs) i.e., plastic fragments between 1 μm and 1 mm in diameter causing growing concern for wildlife and humanity. It is now evident that MPs can accumulate in soil, freshwater, seawater and the atmosphere; thus, living organisms are directly or indirectly exposed to these significant ecological stressors globally. Studies on the physiological effects of MPs in wildlife are emerging, yet, to date, only a handful of studies with a special focus on how MPs affect animal behaviour are available, and there is even less research on how different components of among- and within-individual behavioural variation are affected by MPs. The main goal of this study was to investigate how prolonged exposure (6 weeks) to 10 μm spherical polystyrene microplastics in food (24.85 particles/mg) influences individual variation in risk-taking behaviour in a widespread decomposer, the common pill bug Armadillidium vulgare. Our results indicate a strong MP effect on different levels of behavioural variation: (i) individual mean risk-taking increased, while (ii) a correlation between mean risk-taking and residual within-individual risk-taking variation emerged (risk-takers became less predictable) in the MP treated group. These findings underscore the intricate effects of MPs on individual behavioural variation, with potentially far-reaching ecological and evolutionary consequences given their pervasive presence in both terrestrial and aquatic ecosystems. The negative impacts of these changes are widespread; in our study, MP exposure may increase the susceptibility of A. vulgare to predation, potentially contributing to population decline.
Collapse
Affiliation(s)
- Gergely Horváth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary.
| | - Dávid Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Boglárka Kovács
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Ágnes Péntek
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Bettina Kaczur
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| |
Collapse
|
2
|
Wenglein R, Lu JZ, Scheu S. The influence of forest types including native and non-native tree species on soil macrofauna depends on site conditions. Ecol Evol 2024; 14:e70311. [PMID: 39301294 PMCID: PMC11410562 DOI: 10.1002/ece3.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
The ongoing climate change calls for managing forest ecosystems in temperate regions toward more drought-resistant and climate-resilient stands. Yet ecological consequences of management options such as planting non-native tree species and mixing coniferous and deciduous tree species have been little studied, especially on soil animal communities, key in litter decomposition and pest control. Here, we investigated the taxonomic and trophic structure of soil macrofauna communities in five forest types including native European beech (Fagus sylvatica), range-expanding Norway spruce (Picea abies) and non-native Douglas fir (Pseudotsuga menziesii) as well as conifer-beech mixtures across loamy and sandy sites in northern Germany. Abundance of primary decomposers (feeding predominantly on litter) was high in Douglas fir and beech forests, benefiting from less acidic soil and more favorable litter resources compared to spruce forests, while secondary decomposers (feeding predominantly on microorganisms and microbial residues) reached highest densities in spruce forests. Differences in abundance and species richness among forest types generally varied between regions and were most pronounced in Douglas fir of the sandy region. However, trophic guilds differed more between regions than between forest types, indicating that environmental factors outweigh the importance of forest type on soil macrofauna communities. The analysis of stable isotopes (δ15N and δ13C values) supported the general robustness in trophic position of macrofauna trophic guilds against variations in forest types and regions, but indicated reduced detrital shifts and food-chain lengths in coniferous compared to European beech forests with mixtures mitigating these effects. Overall, for evaluating consequences of future forest management practices on the structure and functioning of soil animal communities, regional factors need to be considered, but in particular at loamy sites the taxonomic and trophic structure of soil macrofauna communities are resistant against changes in forest types.
Collapse
Affiliation(s)
- Ronja Wenglein
- J.-F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| | - Jing-Zhong Lu
- J.-F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| | - Stefan Scheu
- J.-F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
| |
Collapse
|
3
|
Peixoto S, Henriques I, Loureiro S. Long-term effects of Cu(OH) 2 nanopesticide exposure on soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116113. [PMID: 33261963 DOI: 10.1016/j.envpol.2020.116113] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Copper-based (nano)pesticides in agroecosystems may result in unintended consequences on non-target soil microbial communities, due to their antimicrobial broad spectrum. We studied the impact of a commercial Cu(OH)2-nanopesticide, over 90 days, at single and season agricultural application doses, in the presence and absence of an edaphic organism (the isopod Porcellionides pruinosus), on microbial communities' function, structure and abundance. Results were compared to the effects of Cu(OH)2-ionic. The nanopesticide application resulted in significant changes on both bacterial and fungal communities' structure, particularly at the season application. The exposed bacterial community presented a significantly lower richness, and higher diversity and evenness while the exposed fungal community presented lower diversity and richness. At the functional level, a significant increase on microbial ability of carbon utilization and a significant decrease on the β-glucosidase activity was observed for communities exposed to the nanopesticide. Regarding Cu forms, less pronounced effects were observed in soils spiked with Cu(OH)2-ionic, which might result from lower Cu concentration in porewater. The presence of P. pruinosus did not induce significant changes in diversity indexes (fungal community) and community-level physiological profiling, suggesting an attenuation of the nanopesticide effect. This study revealed that Cu(OH)2-nanopesticide, at doses applied in agriculture, impact the soil microbial community, possibly affecting its ecological role. On the other hand, invertebrates may attenuate this effect, highlighting the importance of jointly including different interacting communities in the risk assessment of nanopesticides in soils.
Collapse
Affiliation(s)
- Sara Peixoto
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Bredon M, Depuydt E, Brisson L, Moulin L, Charles C, Haenn S, Moumen B, Bouchon D. Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod. Microorganisms 2021; 9:microorganisms9010148. [PMID: 33440837 PMCID: PMC7826753 DOI: 10.3390/microorganisms9010148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.
Collapse
Affiliation(s)
- Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Elisabeth Depuydt
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Lucas Brisson
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Ciriac Charles
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
- Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, F-94700 Maisons-Alfort, France
| | - Sophie Haenn
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
- Correspondence: ; Tel.: +33-(0)5-49-45-38-95; Fax: +33-(0)5-49-45-40-15
| |
Collapse
|
5
|
Peixoto S, Khodaparast Z, Cornelis G, Lahive E, Green Etxabe A, Baccaro M, Papadiamantis AG, Gonçalves SF, Lynch I, Busquets-Fite M, Puntes V, Loureiro S, Henriques I. Impact of Ag 2S NPs on soil bacterial community - A terrestrial mesocosm approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111405. [PMID: 33010592 DOI: 10.1016/j.ecoenv.2020.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Soils might be a final sink for Ag2S nanoparticles (NPs). Still, there are limited data on their effects on soil bacterial communities (SBC). To bridge this gap, we investigated the effects of Ag2S NPs (10 mg kg-1 soil) on the structure and function of SBC in a terrestrial indoor mesocosm, using a multi-species design. During 28 days of exposure, the SBC function-related parameters were analysed in terms of enzymatic activity, community level physiological profile, culture of functional bacterial groups [phosphorous-solubilizing bacteria (P-SB) and heterotrophic bacteria (HB)], and SBC structure was analysed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis. The SBC exposed to Ag2S NPs showed a significative decrease of functional parameters, such as β-glucosidase activity and L-arginine consumption, and increase of the acid phosphatase activity. At the structural level, significantly lower richness and diversity were detected, but at later exposure times compared to the AgNO3 treatment, likely because of a low dissolution rate of Ag2S NPs. In fact, stronger effects were observed in soils spiked with AgNO3, in both functional and structural parameters. Changes in SBC structure seem to negatively correlate with parameters related to phosphorous (acid phosphatase activity) and carbon cycling (abundance of HB, P-SB, and β-glucosidase activity). Our results indicate a significant effect of Ag2S NPs on SBC, specifically on parameters related to carbon and phosphorous cycling, at doses as low as 10 mg kg-1 soil. These effects were only observed after 28 days, highlighting the importance of long-term exposure experiments for slowly dissolving NPs.
Collapse
Affiliation(s)
- S Peixoto
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Z Khodaparast
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - G Cornelis
- Department of Soil and Environment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - E Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - A Green Etxabe
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - M Baccaro
- Division of Toxicology, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - A G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - S F Gonçalves
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - I Lynch
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - M Busquets-Fite
- Applied Nanoparticles SL, C Àlaba 88, 08018 Barcelona, Spain
| | - V Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - S Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - I Henriques
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| |
Collapse
|
6
|
Abstract
Effective communication is essential in animal life to allow fundamental behavioral processes and survival. Communicating by surface-borne vibrations is likely the most ancient mode of getting and exchanging information in both invertebrates and vertebrates. In this review, we concentrate on the use of vibrational communication in arthropods as a form of intraspecific and interspecific signaling, with a focus on the newest discoveries from our research group in terrestrial isopods (Crustacea: Isopoda: Oniscidea), a taxon never investigated before in this context. After getting little attention in the past, biotremology is now an emerging field of study in animal communication, and it is receiving increased interest from the scientific community dealing with these behavioral processes. In what follows, we illustrate the general principles and mechanisms on which biotremology is based, using definitions, examples, and insights from the literature in arthropods. Vibrational communication in arthropods has mainly been studied in insects and arachnids. For these taxa, much evidence of its use as a source of information from the surrounding environment exists, as well as its involvement in many behavioral roles, such as courtship and mating, conspecific recognition, competition, foraging, parental care, and danger perception. Recently, and for the first time, communication through surface-borne waves has been studied in terrestrial isopods, using a common Mediterranean species of the Armadillidae family as a pilot species, Armadillo officinalis Duméril, 1816. Mainly, for this species, we describe typical behavioral processes, such as turn alternation, aggregation, and stridulation, where vibrational communication appears to be involved.
Collapse
Affiliation(s)
- Sofia Cividini
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L693BX, UK.
| | | |
Collapse
|
7
|
Bredon M, Herran B, Lheraud B, Bertaux J, Grève P, Moumen B, Bouchon D. Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life. BMC Genomics 2019; 20:462. [PMID: 31174468 PMCID: PMC6555040 DOI: 10.1186/s12864-019-5825-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. RESULTS To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. CONCLUSIONS Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Baptiste Lheraud
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Equipe Ecologie Evolution Symbiose - Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073, Poitiers Cedex 9, France.
| |
Collapse
|
8
|
Doshi P, S AMP, Tóth F, Zalai M, Uróczi G. Effect of neem-derived plant protection products on the isopod species Porcellionidespruinosus (Brandt, 1833). Zookeys 2018:415-425. [PMID: 30564047 PMCID: PMC6288261 DOI: 10.3897/zookeys.801.25510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/18/2018] [Indexed: 11/12/2022] Open
Abstract
Neem-based products have gained major attention over the last few years due to their wide range of applications in pest management, and have been in the focus of biological plant protection research in the past decade. Yet, there is limited information available to understand the side effects of these neem-derived pesticides on non-target species in soil. Therefore, Porcellionidespruinosus, a terrestrial isopod, was chosen as a non-target species to investigate such possible effects. Two different experiments were conducted to study two different neem-derived plant protection products, i.e., NeemAzal T/S (1% azadirachtin) which is a commercial product registered in the EU, and neem leaf extract from dried neem leaves (1%).The latter simulates the plant protection product, is domestically produced, and widely used by farmers in India and other tropical and subtropical countries. Findings are consistent with previous results obtained with other non-target organisms, i.e., neither of the tested neem products have adverse effects on the mortality of P.pruinosus. However, further research on a wider range of soil organisms is needed to prove the safety of neem-based products as biological control agents and to be part of integrated pest management.
Collapse
Affiliation(s)
- Pratik Doshi
- Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, H-2100, Páter Károly utca 1., Gödöllő, Hungary Szent Istvan University Godollo Hungary
| | - Anett Mészárosné Pó S
- Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, H-2100, Páter Károly utca 1., Gödöllő, Hungary Szent Istvan University Godollo Hungary
| | - Ferenc Tóth
- Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, H-2100, Páter Károly utca 1., Gödöllő, Hungary Szent Istvan University Godollo Hungary
| | - Márk Zalai
- Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, H-2100, Páter Károly utca 1., Gödöllő, Hungary Szent Istvan University Godollo Hungary
| | - György Uróczi
- Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, H-2100, Páter Károly utca 1., Gödöllő, Hungary Szent Istvan University Godollo Hungary
| |
Collapse
|
9
|
Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. MICROBIOME 2018; 6:162. [PMID: 30223906 PMCID: PMC6142342 DOI: 10.1186/s40168-018-0536-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts. RESULTS To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare. CONCLUSIONS Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Jessica Dittmer
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cyril Noël
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| |
Collapse
|
10
|
Montesanto G, Cividini S. A crossover design to assess feeding preferences in terrestrial isopods: A case study in a Mediterranean species. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Medini-Bouaziz L, Naceur Fessi A, Charfi-Cheikhrouha F. Breeding patterns in the pre-desert oniscid isopod Porcellio buddelundiof Matmata (Gabès, Tunisia). INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1331936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lamia Medini-Bouaziz
- Faculty of Sciences of Tunis, RU-11ES11 Animal Bio-Ecology and Systematic Evolutionary, University Tunis El Manar, Tunis, Tunisia
| | - Amira Naceur Fessi
- Faculty of Sciences of Tunis, RU-11ES11 Animal Bio-Ecology and Systematic Evolutionary, University Tunis El Manar, Tunis, Tunisia
| | - Faouzia Charfi-Cheikhrouha
- Faculty of Sciences of Tunis, RU-11ES11 Animal Bio-Ecology and Systematic Evolutionary, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|