1
|
Chariyev-Prinz F, Szojka A, Neto N, Burdis R, Monaghan MG, Kelly DJ. An assessment of the response of human MSCs to hydrostatic pressure in environments supportive of differential chondrogenesis. J Biomech 2023; 154:111590. [PMID: 37163962 DOI: 10.1016/j.jbiomech.2023.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-β3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.
Collapse
Affiliation(s)
- Farhad Chariyev-Prinz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Alex Szojka
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nuno Neto
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Marchal-Chaud H, Rieger R, Mai VT, Courtial EJ, Ottenio M, Bonnefont-Rebeix C, Bruyère K, Boulocher C. Contactless mechanical stimulation of tissue engineered constructs: Development and validation of an air-pulse device. BIOMATERIALS ADVANCES 2023; 149:213401. [PMID: 37018914 DOI: 10.1016/j.bioadv.2023.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity. METHODS A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process. RESULTS We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute. CONCLUSION The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.
Collapse
|
3
|
Jeyaraman M, Muthu S, Jeyaraman N, Ranjan R, Jha SK, Mishra P. Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis. Indian J Orthop 2022; 56:1-15. [PMID: 35070137 PMCID: PMC8748553 DOI: 10.1007/s43465-021-00439-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Synovium-derived mesenchymal stromal cell (Sy-MSC) is a newer member of the mesenchymal stromal cell families. The first successful demonstration of the mesenchymal stromal cell from the human synovial membrane was done in 2001 and since then its potential role for musculoskeletal regeneration has been keenly documented. The regenerative effects of Sy-MSCs are through paracrine signaling, direct cell-cell interactions, and extracellular vehicles. Sy-MSCs possess superior chondrogenicity than other sources of mesenchymal stromal cells. This article aims to outline the advancement of synovium-derived mesenchymal stromal cells along with a specific insight into the application for managing osteoarthritis knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Government Medical College & Hospital, Dindigul, Tamil Nadu India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Prabhu Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
4
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. The Natural History of Medial Meniscal Tears in the ACL Deficient and ACL Reconstructed Rat Knee. Cartilage 2021; 13:1570S-1582S. [PMID: 34024166 PMCID: PMC8804834 DOI: 10.1177/19476035211014588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The process of anterior cruciate ligament (ACL) injury-induced meniscal tear formation is not fully understood. Clinical studies have shown that ACL reconstruction (ACLR) reduces the development of secondary meniscal tears, but it is difficult to gain insight into the protective effects of ACLR from clinical studies alone. Using rat ACL transection (ACLT) and ACLR models, we aimed to reveal (1) the formation process of meniscal tears secondary to ACLT and (2) the protective effects of ACLR on secondary meniscal tears. DESIGN ACLT surgery alone or with ACLR was performed on the knees of rats. Histomorphological and histopathological changes were examined in the posteromedial region of the meniscus in intact rats and in rats that received ACLT or ACLR up to 12 weeks postsurgery. In addition, anterior-posterior joint laxity was measured using the universal testing machine to evaluate the effects of ACLT and ACLR on joint laxity. RESULTS AAnterior-posterior laxity was significantly increased by ACLT compared to the intact knee. This ACLT-induced joint laxity was partially but significantly reduced by ACLR. Meniscal proliferation and hyaline cartilage-like tissue formation were detected in the medial meniscus at 4 weeks post-ACLT. At 12 weeks post-ACLT, hyaline cartilage-like tissue was replaced by ossicles and meniscal tears were observed. These ACLT-induced abnormalities were attenuated by ACLR. CONCLUSIONS Our results suggest that ACLT-induced joint laxity induces secondary medial meniscal tears through meniscal proliferation and ossicle formation via endochondral ossification. Joint re-stabilization by ACLR suppresses meniscal proliferation and ossicle formation and consequently prevents secondary meniscal tears.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty
of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima,
Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty
of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima,
Japan,Junya Ozawa, Department of Rehabilitation,
Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai
555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan.
| | - Kengo Minamimoto
- Major in Medical Engineering and
Technology, Graduate School of Medical Technology and Health Welfare Sciences,
Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty
of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima,
Japan
| |
Collapse
|
5
|
Hodder E, Guppy F, Covill D, Bush P. The effect of hydrostatic pressure on proteoglycan production in articular cartilage in vitro: a meta-analysis. Osteoarthritis Cartilage 2020; 28:1007-1019. [PMID: 32445666 DOI: 10.1016/j.joca.2020.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In previous research the use of hydrostatic pressure (HP) has been applied to enhance the formation of engineered cartilage, through the up-regulation of proteoglycan synthesis by mechanotransduction. However, the HP stimulation approach has been shown to vary between studies with a wide disparity in results, including anabolic, catabolic and non-responsive outcomes. To this end, a meta-analysis of HP publications using 3D cultured chondrocytes was performed to elucidate the key experiment factors involved in achieving a mechanotransducive response. DESIGN The effects of different HP regimes on proteoglycan production were investigated based on the following factors: static vs dynamic application, pressure magnitude, and experiment duration. Meta-analysis was performed on raw data taken from 11 publications which employed either aggrecan gene expression analysis or dimethyl methylene blue colorimetric assay. The measure of effect was calculated based on mean difference using a random effects model. RESULTS Analysis revealed that a significant anabolic response was most likely achieved when the following factors were employed; a static HP application, a magnitude within the mid-high physiological range of cartilage (≤5-10 MPa) and a study duration of ≥2 weeks. CONCLUSIONS Thus, we propose that the selection of HP experiment factors can have a significant influence on engineered cartilage development, and that the results of this meta-analysis can be used as a basis for the planning of future HP experiments.
Collapse
Affiliation(s)
- E Hodder
- School of Computing, Engineering and Mathematics, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| | - F Guppy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK; Centre for Stress and Age-related Disease, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - D Covill
- School of Computing, Engineering and Mathematics, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - P Bush
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
6
|
Ganadhiepan G, Zhang L, Miramini S, Mendis P, Patel M, Ebeling P, Wang Y. The Effects of Dynamic Loading on Bone Fracture Healing Under Ilizarov Circular Fixators. J Biomech Eng 2019; 141:2727816. [DOI: 10.1115/1.4043037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Indexed: 11/08/2022]
Abstract
Early weight bearing appears to enhance bone fracture healing under Ilizarov circular fixators (ICFs). However, the role of early weight bearing in the healing process remains unclear. This study aims to provide insights into the effects of early weight bearing on healing of bone fractures stabilized with ICFs, with the aid of mathematical modeling. A computational model of fracture site was developed using poro-elastic formulation to simulate the transport of mesenchymal stem cells (MSCs), fibroblasts, chondrocytes, osteoblasts, osteogenic growth factor (OGF), and chondrogenic growth factor (CGF) and MSC differentiation during the early stage of healing, under various combinations of fracture gap sizes (GS), ICF wire pretension forces, and axial loads. 1 h of physiologically relevant cyclic axial loading followed by 23 h of rest in the post-inflammation phase (i.e., callus with granulation tissue) was simulated. The results show that physiologically relevant dynamic loading could significantly enhance cell and growth factor concentrations in the fracture site in a time and spatially dependent manner. 1 h cyclic loading (axial load with amplitude, PA, of 200 N at 1 Hz) increased the content of chondrocytes up to 37% (in all zones of callus), CGF up to 28% (in endosteal and periosteal callus) and OGF up to 50% (in endosteal and cortical callus) by the end of the 24 h period simulated. This suggests that the synergistic effect of dynamic loading-induced advective transport and mechanical stimuli due to early weight bearing is likely to enhance secondary healing. Furthermore, the study suggests that relatively higher PA values or lower ICF wire pretension forces or smaller GS could result in increased chondrocyte and GF content within the callus.
Collapse
Affiliation(s)
- Ganesharajah Ganadhiepan
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia e-mail:
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Minoo Patel
- Epworth Hospital Richmond, Victoria 3121, Australia
| | - Peter Ebeling
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Yulong Wang
- Rehabilitation Centre, The First Affiliated Hospital, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
7
|
Zvicer J, Obradovic B. Bioreactors with hydrostatic pressures imitating physiological environments in intervertebral discs. J Tissue Eng Regen Med 2017; 12:529-545. [PMID: 28763577 DOI: 10.1002/term.2533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/27/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Intervertebral discs are normally exposed to a variety of loads and stresses but hydrostatic pressure (HP) could be the main biosignal for chondrogenic cell differentiation and maintenance of this tissue. Although there are simple approaches to intermittently expose cell cultures to HP in separate material testing devices, utilization of biomimetic bioreactors aiming to provide in vitro conditions mimicking those found in vivo, attracts special attention. However, design of such bioreactors is complex due to the requirement of high HP magnitudes (up to 3 MPa) applied in different regimes mimicking pressures arising in intervertebral disc during normal daily activities. Furthermore, efficient mass transfer has to be facilitated to cells within 3D scaffolds, and the engineering challenges include avoidance or removal of gas bubbles in the culture medium before pressurization as well as selection of appropriate, biocompatible construction materials and maintenance of sterility during cultivation. Here, we review approaches to induce HP in 2D and 3D cell cultures categorized into 5 groups: (I) discontinuous systems with direct pressurization of the cultivation medium by a piston, (II) discontinuous systems with indirect pressurization by a compression fluid, (III) continuous systems with direct pressurization of the cultivation medium, static culture, (IV) continuous systems with culture perfusion, and (V) systems applying HP in conjunction with other physical signals. Although the complexity is increasing as additional features are added to the systems, the need to understand HP effects on cells and tissues in a physiologically relevant, yet precisely controlled, environment together with current technological advancements are leading towards innovative bioreactor solutions.
Collapse
Affiliation(s)
- Jovana Zvicer
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. NPJ Microgravity 2017; 3:28. [PMID: 29147680 PMCID: PMC5681589 DOI: 10.1038/s41526-017-0032-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Simulated microgravity has been shown to enhance cartilaginous matrix formation by chondrocytes and chondrogenesis of mesenchymal stem cells (MSCs). Similarly, coculture of primary chondrocytes with MSCs has been shown as a strategy to simultaneously retain the differentiated phenotype of chondrocytes and enhance cartilaginous matrix formation. In this study, we investigated the effect of simulated microgravity on cocultures of primary human meniscus cells and adipose-derived MSCs. We used biochemical, qPCR, and immunofluorescence assays to conduct our investigation. Simulated microgravity significantly enhanced cartilaginous matrix formation in cocultures of primary meniscus cells and adipose-derived MSCs. The enhancement was accompanied by increased hypertrophic differentiation markers, COL10A1 and MMP-13, and suppression of hypertrophic differentiation inhibitor, gremlin 1 (GREM1). Co-culture of meniscal cartilage-forming cells with fat-derived stem cells can lead to enhanced cartilage matrix production when cultured under simulated microgravity. Adetola Adesida from the University of Alberta in Edmonton, Canada, and colleagues cultured two types of cells found together in the knee—cartilage-forming chondrocyte cells (taken from the meniscus) and mesenchymal stem cells (isolated from the infrapatellar fat pad)—in a rotary cell culture system designed to model weightlessness on Earth. Simulated microgravity enhanced the synergistic interaction between the two types of cells in culture, resulting in more matrix production, but it also prompted the cartilage-forming cells to differentiate towards bone-forming cells, as evidenced by gene expression analysis. These findings suggest that microgravity and simulated microgravity-based culture technologies could help bioengineers grow knee replacements for people with meniscus tears, but increased bone-directed differentiation could pose a possible problem for astronauts on prolonged missions.
Collapse
|
9
|
Jang Y, Jung H, Ju JH. Chondrogenic Differentiation Induction of Adipose-derived Stem Cells by Centrifugal Gravity. J Vis Exp 2017. [PMID: 28287507 DOI: 10.3791/54934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Impaired cartilage cannot heal naturally. Currently, the most advanced therapy for defects in cartilage is the transplantation of chondrocytes differentiated from stem cells using cytokines. Unfortunately, cytokine-induced chondrogenic differentiation is costly, time-consuming, and associated with a high risk of contamination during in vitro differentiation. However, biomechanical stimuli also serve as crucial regulatory factors for chondrogenesis. For example, mechanical stress can induce chondrogenic differentiation of stem cells, suggesting a potential therapeutic approach for the repair of impaired cartilage. In this study, we demonstrated that centrifugal gravity (CG, 2,400 × g), a mechanical stress easily applied by centrifugation, induced the upregulation of sex determining region Y (SRY)-box 9 (SOX9) in adipose-derived stem cells (ASCs), causing them to express chondrogenic phenotypes. The centrifuged ASCs expressed higher levels of chondrogenic differentiation markers, such as aggrecan (ACAN), collagen type 2 alpha 1 (COL2A1), and collagen type 1 (COL1), but lower levels of collagen type 10 (COL10), a marker of hypertrophic chondrocytes. In addition, chondrogenic aggregate formation, a prerequisite for chondrogenesis, was observed in centrifuged ASCs.
Collapse
Affiliation(s)
- Yeonsue Jang
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hyerin Jung
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea;
| |
Collapse
|
10
|
Jang Y, Jung H, Nam Y, Rim YA, Kim J, Jeong SH, Ju JH. Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation. Stem Cell Res Ther 2016; 7:184. [PMID: 27931264 PMCID: PMC5144493 DOI: 10.1186/s13287-016-0445-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023] Open
Abstract
Background Cartilage does not have the capability to regenerate itself. Therefore, stem cell transplantation is a promising therapeutic approach for impaired cartilage. For stem cell transplantation, in vitro enrichment is required; however, stem cells not only become senescent but also lose their differentiation potency during this process. In addition, cytokines are normally used for chondrogenic differentiation induction of stem cells, which is highly expensive and needs an additional step to culture. In this study, we introduced a novel method to induce chondrogenic differentiation of adipose-derived stem cells (ASCs), which are more readily available than bone marrow-derived mesenchymal stem cells(bMSCs), using centrifugal gravity (CG). Methods ASCs were stimulated by loading different degrees of CG (0, 300, 600, 1200, 2400, and 3600 g) to induce chondrogenic differentiation. The expression of chondrogenic differentiation-related genes was examined by RT-PCR, real-time PCR, and western blot analyses. The chondrogenic differentiation of ASCs stimulated with CG was evaluated by comparing the expression of positive markers [aggrecan (ACAN) and collagen type II alpha 1 (COL2A1)] and negative markers (COL1 and COL10) with that in ASCs stimulated with transforming growth factor (TGF)-β1 using micromass culture, immunofluorescence, and staining (Alcian Blue and Safranin O). Results Expression of SOX9 and SOX5 was upregulated by CG (2400 g for 30 min). Increased expression of ACAN and COL2A1 (positive markers) was detected in monolayer-cultured ASCs after CG stimulation, whereas that of COL10 (a negative marker) was not. Expression of bone morphogenetic protein (BMP) 4, an upstream stimulator of SOX9, was upregulated by CG, which was inhibited by Dorsomorphin (an inhibitor of BMP4). Increased expression of proteoglycan, a major component of cartilage, was confirmed in the micromass culture of ASCs stimulated with CG by Alcian Blue and Safranin O staining. Conclusions Chondrogenic differentiation of ASCs can be induced by optimized CG (2400 g for 30 min). Expression of SOX9 is upregulated by CG via increased expression of BMP4. CG has a similar ability to induce SOX9 expression as TGF-β1. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0445-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeonsue Jang
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Hyerin Jung
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Yoojun Nam
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Juryun Kim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Sang Hoon Jeong
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.
| |
Collapse
|
11
|
The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling. Ann Biomed Eng 2016; 44:2971-2983. [DOI: 10.1007/s10439-016-1631-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/27/2016] [Indexed: 01/10/2023]
|
12
|
Li Y, Zhou J, Yang X, Jiang Y, Gui J. Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads. Dev Growth Differ 2016; 58:180-93. [PMID: 26771816 DOI: 10.1111/dgd.12261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yang Li
- Orthopedics Laboratory of Nanjing First Hospital, Nanjing Medical University, 169 Gongyuan Road, Nanjing, China
| | - Jianxin Zhou
- Department of Orthopedics, Wujiang People's Hospital, 169 Gongyuan Road, Wujiang, Suzhou, China
| | - Xiaofei Yang
- Orthopedics Laboratory of Nanjing First Hospital, Nanjing Medical University, 169 Gongyuan Road, Nanjing, China
| | - Yiqiu Jiang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jianchao Gui
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
13
|
Biomechanical force induces the growth factor production in human periodontal ligament-derived cells. Odontology 2015; 104:27-34. [PMID: 25957627 DOI: 10.1007/s10266-015-0206-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.
Collapse
|
14
|
Foster NC, Henstock JR, Reinwald Y, El Haj AJ. Dynamic 3D culture: models of chondrogenesis and endochondral ossification. ACTA ACUST UNITED AC 2015; 105:19-33. [PMID: 25777047 DOI: 10.1002/bdrc.21088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel-based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage.
Collapse
Affiliation(s)
- Nicola C Foster
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre University of Keele, ST4 7QB, United Kingdom
| | | | | | | |
Collapse
|
15
|
Warnock JJ, Bobe G, Duesterdieck-Zellmer KF, Spina J, Ott J, Baltzer WI, Bay BK. Growth factor treated tensioned synoviocyte neotissues: towards meniscal bioscaffold tissue engineering. Vet J 2014; 200:22-30. [PMID: 24559744 DOI: 10.1016/j.tvjl.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/22/2013] [Accepted: 01/18/2014] [Indexed: 12/19/2022]
Abstract
Meniscal injury is a common cause of osteoarthritis, pain, and disability in dogs and humans, but tissue-engineered bioscaffolds could be a treatment option for meniscal deficiency. The objective of this study was to compare meniscus-like matrix histology, composition, and biomechanical properties of autologous tensioned synoviocyte neotissues (TSN) treated with fetal bovine serum (TSNfbs) or three chondrogenic growth factors (TSNgf). Fourth passage canine synoviocytes from 10 dogs were grown in hyperconfluent monolayer culture, formed into TSN, and then cultured for 3 weeks with 17.7% FBS or three human recombinant TSNgf (bFGF, TGF-β1, and IGF-1). Cell viability was determined with laser microscopy. Histological architecture and the composition of fibrocartilage matrix were evaluated in TSN by staining tissues for glycosaminoglycan (GAG), α-smooth muscle actin, and collagen 1 and 2; quantifying the content of GAG, DNA, and hydroxyproline; and measuring the gene expression of collagens type 1α and 2α, the GAG aggrecan, and transcription factor Sry-type Homeobox Protein-9 (SOX9). Biomechanical properties were determined by materials testing force-deformation curves. The TSN contained components and histological features of mensical fibrocartilage extracellular matrix. Growth factor-treated TSN had higher DNA content but lower cell viability than TSNfbs. TSNgf had greater fibrocartilage-like matrix content (collagen 2 and GAG content with increased collagen 2α and SOX9 gene expression). Additionally, TSNgf collagen was more organized histologically and so had greater tensile biomechanical properties. The results indicate the potential of TSN when cultured with growth factors as implantable bioscaffolds for the treatment of canine meniscal deficiency.
Collapse
Affiliation(s)
- J J Warnock
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - G Bobe
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, OR 97331, USA
| | - K F Duesterdieck-Zellmer
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - J Spina
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - J Ott
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - W I Baltzer
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - B K Bay
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Warnock JJ, Baker L, Ballard GA, Ott J. In vitro synthesis of tensioned synoviocyte bioscaffolds for meniscal fibrocartilage tissue engineering. BMC Vet Res 2013; 9:242. [PMID: 24299420 PMCID: PMC4220847 DOI: 10.1186/1746-6148-9-242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
Abstract
Background Meniscal injury is a common cause of lameness in the dog. Tissue engineered bioscaffolds may be a treatment option for meniscal incompetency, and ideally would possess meniscus- like extracellular matrix (ECM) and withstand meniscal tensile hoop strains. Synovium may be a useful cell source for meniscal tissue engineering because of its natural role in meniscal deficiency and its in vitro chondrogenic potential. The objective of this study is to compare meniscal -like extracellular matrix content of hyperconfluent synoviocyte cell sheets (“HCS”) and hyperconfluent synoviocyte sheets which have been tensioned over wire hoops (tensioned synoviocyte bioscaffolds, “TSB”) and cultured for 1 month. Results Long term culture with tension resulted in higher GAG concentration, higher chondrogenic index, higher collagen concentration, and type II collagen immunoreactivity in TSB versus HCS. Both HCS and TSB were immunoreactive for type I collagen, however, HCS had mild, patchy intracellular immunoreactivity while TSB had diffuse moderate immunoreactivity over the entire bisocaffold. The tissue architecture was markedly different between TSB and HCS, with TSB containing collagen organized in bands and sheets. Both HCS and TSB expressed alpha smooth muscle actin and displayed active contractile behavior. Double stranded DNA content was not different between TSB and HCS, while cell viability decreased in TSB. Conclusions Long term culture of synoviocytes with tension improved meniscal- like extra cellular matrix components, specifically, the total collagen content, including type I and II collagen, and increased GAG content relative to HCS. Future research is warranted to investigate the potential of TSB for meniscal tissue engineering.
Collapse
Affiliation(s)
- Jennifer J Warnock
- Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| | | | | | | |
Collapse
|
17
|
Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol 2013; 34:89-100. [PMID: 24083452 DOI: 10.3109/07388551.2013.823596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Biomedical Engineering, University of California , Davis, CA , USA
| | | | | | | | | | | |
Collapse
|
18
|
Correia C, Pereira AL, Duarte ARC, Frias AM, Pedro AJ, Oliveira JT, Sousa RA, Reis RL. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure. Tissue Eng Part A 2012; 18:1979-91. [PMID: 22559784 DOI: 10.1089/ten.tea.2012.0083] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.
Collapse
Affiliation(s)
- Cristina Correia
- University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 2011; 347:613-27. [PMID: 22030892 PMCID: PMC3306561 DOI: 10.1007/s00441-011-1243-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/09/2011] [Indexed: 01/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality.
Collapse
|
20
|
Abstract
BACKGROUND Avascular meniscal injuries are largely incapable of healing; the most common treatment remains partial meniscectomy despite the risk of subsequent osteoarthritis. Meniscal responses to injury are partially mediated through synovial activity and strategies have been investigated to encourage healing through stimulating or transplanting adjacent synovial lining. However, with their potential for chondrogenesis, synovial fibroblast-like stem cells hold promise for meniscal cartilage tissue engineering. QUESTIONS/PURPOSES Thus, specific purposes of this review were to (1) examine how the synovial intima and synoviomeniscal junction affect current meniscal treatment modalities; and (2) examine the components of tissue engineering (cells, scaffolds, bioactive agents, and bioreactors) in the specific context of how cells of synovial origin may be used for meniscal healing or regeneration. METHODS An online bibliographic search through PubMed was performed in March 2010. Studies were subjectively evaluated and reviewed if they addressed the question posed. Fifty-four resources were initially retrieved, which offered information on the chondrogenic potential of synovial-based cells that could prove valuable for meniscal fibrocartilage engineering. RESULTS Based on the positive effects of adjoining synovium on meniscal healing as used in some current treatment modalities, the chondrogenic potential of fibroblast-like stem cells of synovial origin make this cell source a promising candidate for cell-based tissue engineering strategies. CONCLUSIONS The abundance of autologous synovial lining, its ability to regenerate, and the potential of synovial-derived stem cells to produce a wide spectrum of chondral matrix components make it an ideal candidate for future meniscal engineering investigations.
Collapse
Affiliation(s)
- Derek B. Fox
- University of Missouri, Comparative Orthopaedic Laboratory, Columbia, MO USA ,University of Missouri, Veterinary Medical Teaching Hospital, 900 East Campus Drive, Columbia, MO USA
| | | |
Collapse
|
21
|
Simulated microgravity using a rotary cell culture system promotes chondrogenesis of human adipose-derived mesenchymal stem cells via the p38 MAPK pathway. Biochem Biophys Res Commun 2011; 414:412-8. [PMID: 21971552 DOI: 10.1016/j.bbrc.2011.09.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022]
Abstract
Mesenchymal stem cells (MSCs) are multi-potent, and the chondrogenesis of MSCs is affected by mechanical stimulation. The aim of this study was to investigate, using a rotary cell culture system (RCCS) bioreactor, the effects of microgravity on the chondrogenic differentiation of human adipose-derived MSCs (ADSCs), which were cultured in pellets with or without the chondrogenic growth factor TGF-β1. In addition, we evaluated the role of the p38 MAPK pathway in this process. The real-time PCR and histological results show that microgravity has a synergistic effect on chondrogenesis with TGF-β1. The p38 MAPK pathway was activated by TGF-β1 alone and was further stimulated by microgravity. Inhibition of p38 activity with SB203580 suppressed chondrocyte-specific gene expression and matrix production. These findings suggest that the p38 MAPK signal acts as an essential mediator in the microgravity-induced chondrogenesis of ADSCs.
Collapse
|
22
|
Yamamoto K, Yamamoto T, Ichioka H, Akamatsu Y, Oseko F, Mazda O, Imanishi J, Kanamura N, Kita M. Effects of mechanical stress on cytokine production in mandible-derived osteoblasts. Oral Dis 2011; 17:712-9. [DOI: 10.1111/j.1601-0825.2011.01832.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Rottmar M, Ackerknecht S, Wick P, Maniura-Weber K. A High Throughput System for Long Term Application of Intermittent Cyclic Hydrostatic Pressure on Cells in Culture. J Biomech Eng 2011; 133:024502. [DOI: 10.1115/1.4003313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The process of bone remodeling is governed by mechanical stresses and strains. Studies on the effects of mechanical stimulation on cell response are often difficult to compare as the nature of the stimuli and differences in parameters applied vary greatly. Experimental systems for the investigation of mechanical stimuli are mostly limited in throughput or flexibility and often the sum of several stimuli is applied. In this work, a flexible system that allows the investigation of cell response to isolated intermittent cyclic hydrostatic pressure (icHP) on a high throughput level is shown. Human bone derived cells were cultivated with or without mechanical stimulus in the presence or absence of chemical cues triggering osteogenesis for 7–10 days. Cell proliferation and osteogenic differentiation were evaluated by cell counting and immunohistochemical staining for bone alkaline phosphatase as well as collagen 1, respectively. In either medium, both cell proliferation and level of differentiation were increased when the cultures were mechanically stimulated. These initial results therefore qualify the present system for studies on the effects of isolated icHP on cell fate and encourage further investigations on the details behind the observed effects.
Collapse
Affiliation(s)
- Markus Rottmar
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Sabine Ackerknecht
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Peter Wick
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
24
|
Sawamura K, Ikeda T, Nagae M, Okamoto SI, Mikami Y, Hase H, Ikoma K, Yamada T, Sakamoto H, Matsuda KI, Tabata Y, Kawata M, Kubo T. Characterization of In Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs. Tissue Eng Part A 2009; 15:3719-27. [DOI: 10.1089/ten.tea.2008.0697] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuhide Sawamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takumi Ikeda
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masateru Nagae
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shin-ichi Okamoto
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Mikami
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Hase
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Yamada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Sakamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Fan J, Varshney RR, Ren L, Cai D, Wang DA. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:75-86. [PMID: 19196118 DOI: 10.1089/ten.teb.2008.0586] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ever since synovium-derived mesenchymal stem cells (SMSCs) were first identified and successfully isolated in 2001, as a brand new member in MSC families, they have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration, particularly for reconstructions of cartilage, bones, tendons, and muscles. Besides the general multipotency in common among the MSC community, SMSCs excel other sourced MSCs in higher ability of proliferation and superiority in chondrogenesis. This review summarizes the latest advances in SMSC-related studies covering their specific isolation methodologies, biological insights, and practical applications in musculoskeletal therapeutics of which an emphasis is cast on engineered chondrogenesis.
Collapse
Affiliation(s)
- Jiabing Fan
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Sakao K, Takahashi KA, Arai Y, Saito M, Honjo K, Hiraoka N, Asada H, Shin-Ya M, Imanishi J, Mazda O, Kubo T. Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab 2009; 27:412-23. [PMID: 19333684 DOI: 10.1007/s00774-009-0058-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/10/2008] [Indexed: 10/20/2022]
Abstract
To clarify the significance of the osteophytes that appear during the progression of osteoarthritis (OA), we investigated the expression of inflammatory cytokines and proteases in osteoblasts from osteophytes. We also examined the influence of mechanical stress loading on osteoblasts on the expression of inflammatory cytokines and proteases. Osteoblasts were isolated from osteophytes in 19 patients diagnosed with knee OA and from subchondral bone in 4 patients diagnosed with femoral neck fracture. Messenger RNA expression and protein production of inflammatory cytokines and proteases were analyzed using real-time RT-PCR and ELISA, respectively. To examine the effects of mechanical loading, continuous hydrostatic pressure was applied to the osteoblasts. We determined the mRNA expression and protein production of IL-6, IL-8, and MMP-13, which are involved in the progression of OA, were increased in the osteophytes. Additionally, when OA pathological conditions were simulated by applying a nonphysiological mechanical stress load, the gene expression of IL-6 and IL-8 increased. Our results suggested that nonphysiological mechanical stress may induce the expression of biological factors in the osteophytes and is involved in OA progression. By controlling the expression of these genes in the osteophytes, the progression of cartilage degeneration in OA may be reduced, suggesting a new treatment strategy for OA.
Collapse
Affiliation(s)
- Kei Sakao
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|