1
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:647-662. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
3
|
Zhao S, Zhang J, Qiu M, Hou Y, Li X, Zhong G, Gou K, Li J, Zhang C, Qu Y, Wang X. Mucoadhesive and thermosensitive Bletilla striata polysaccharide/chitosan hydrogel loaded nanoparticles for rectal drug delivery in ulcerative colitis. Int J Biol Macromol 2024; 254:127761. [PMID: 38287598 DOI: 10.1016/j.ijbiomac.2023.127761] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Ulcerative colitis (UC) is a chronic disease with diffuse mucosal inflammation limited to the colon. A topical drug delivery system that could be facilely performed and efficiently retained at colon are attractive for clinical ulcerative colitis treatment. Herein, a novel platform for rectal administration of thermosensitive hydrogel co-loaded with nanoparticles to treat ulcerative colitis was developed. Thiolated-hyaluronic acid was synthesized, and prepared nanoparticles with zein and Puerarin. And the Bletilla striata polysaccharide with colonic mucosa repair effect was oxidized, and mixed with chitosan and β-sodium glycerophosphate to prepare thermosensitive hydrogel. Thermosensitive hydrogels were combined with nanoparticles to investigate their mucosal adhesion, retention, and permeability, as well as their therapeutic effects on ulcerative colitis. Thiolated-hyaluronic acid nanoparticles had good stability, and could be quickly converted into hydrogel at body temperature when combined with thermosensitive hydrogel. The nanoparticles-loaded thermosensitive hydrogel also was excellent at mucosal penetration, enhancing the retention time of drugs in colon, and effectively controlling drug release. In vivo ulcerative colitis treatment revealed that the nanoparticles-loaded hydrogel significantly repaired the colonic mucosa and inhibit colonic inflammation. Therefore, the thermosensitive hydrogel co-loaded nanoparticles will have a promising application in effective treatment of ulcerative colitis by topical administration.
Collapse
Affiliation(s)
- Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yusen Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
4
|
Karmakar PD, Velu K, Vineeth Kumar CM, Pal A. Advances in injectable hydrogel: Design, functional regulation, and biomedical applications. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractRecently, injectable hydrogels have been considered smart materials and have been widely researched for their use as scaffolds. They resemble the extracellular matrix of native tissue and have the capability for homogeneous mixing with therapeutic agents. It can be implanted into living bodies with minimal invasiveness and usability for irregularly shaped sites. Such unique features make the injectable hydrogels as promising materials in tissue engineering, drug delivery system, and gene/protein delivery. This review article provides a comprehensive overview of the different mechanisms employed in the preparation of injectable hydrogel, as well as a detailed exploration of its applications in the biomedical field. Furthermore, the article highlights the critical importance of developing injectable hydrogels as market‐viable products, highlighting their potential impact in the field of regenerative medicine.
Collapse
Affiliation(s)
- Puja Das Karmakar
- Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) Tsukuba Japan
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - C. M. Vineeth Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
5
|
Ramírez-Noguera P, Zetina Marín I, Gómez Chavarin BM, Valderrama ME, López-Barrera LD, Díaz-Torres R. Study of the Early Effects of Chitosan Nanoparticles with Glutathione in Rats with Osteoarthrosis. Pharmaceutics 2023; 15:2172. [PMID: 37631386 PMCID: PMC10459352 DOI: 10.3390/pharmaceutics15082172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Due to cartilage's limited capacity for regeneration, numerous studies have been conducted to find new drugs that modify osteoarthrosis's progression. Some evidence showed the capability of chitosan nanoparticles with glutathione (Np-GSH) to regulate the oxide-redox status in vitro in human chondrocytes. This work aimed to evaluate the capacity of Np-GSH in vivo, using Wistar rats with induced surgical osteoarthritis. Radiographic, biochemical (GSH and TBARS quantification), histopathological, and immunohistochemical (Col-2 and MMP-13) analyses were performed to evaluate the progress of the osteoarthritic lesions after the administration of a single dose of Np-GSH. According to the results obtained, the GSH contained in the NPs could be vectored to chondrocytes and used by the cell to modulate the oxidative state reduction, decreasing the production of ROS and free radicals induced by agents oxidizing xenobiotics, increasing GSH levels, as well as the activity of GPx, and decreasing lipid peroxidation. These results are significant since the synthesis of GSH develops exclusively in the cell cytoplasm, and its quantity under an oxidation-reduction imbalance may be defective. Therefore, the results allow us to consider these nanostructures as a helpful study tool to reduce the damage associated with oxidative stress in various diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Patricia Ramírez-Noguera
- Multidisciplinary Research Unit, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli CP 54714, Mexico; (P.R.-N.)
| | - Iliane Zetina Marín
- Multidisciplinary Research Unit, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli CP 54714, Mexico; (P.R.-N.)
| | - Blanca Margarita Gómez Chavarin
- School of Medicine, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, Mexico City CP 04510, Mexico
| | - Moisés Eduardo Valderrama
- Equine Hospital, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli CP 54714, Mexico
| | - Laura Denise López-Barrera
- Multidisciplinary Research Unit, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli CP 54714, Mexico; (P.R.-N.)
| | - Roberto Díaz-Torres
- Multidisciplinary Research Unit, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli CP 54714, Mexico; (P.R.-N.)
| |
Collapse
|
6
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
7
|
Cosma C, Apostu D, Vilau C, Popan A, Oltean-Dan D, Balc N, Tomoaie G, Benea H. Finite Element Analysis of Different Osseocartilaginous Reconstruction Techniques in Animal Model Knees. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2546. [PMID: 37048840 PMCID: PMC10095518 DOI: 10.3390/ma16072546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Lesions of the articular cartilage are frequent in all age populations and lead to functional impairment. Multiple surgical techniques have failed to provide an effective method for cartilage repair. The aim of our research was to evaluate the effect of two different compression forces on three types of cartilage repair using finite element analysis (FEA). Initially, an in vivo study was performed on sheep. The in vivo study was prepared as following: Case 0-control group, without cartilage lesion; Case 1-cartilage lesion treated with macro-porous collagen implants; Case 2-cartilage lesion treated with collagen implants impregnated with bone marrow concentrate (BMC); Case 3-cartilage lesion treated with collagen implants impregnated with adipose-derived stem cells (ASC). Using the computed tomography (CT) data, virtual femur-cartilage-tibia joints were created for each Case. The study showed better results in bone changes when using porous collagen implants impregnated with BMC or ASC stem cells for the treatment of osseocartilaginous defects compared with untreated macro-porous implant. After 7 months postoperative, the presence of un-resorbed collagen influences the von Mises stress distribution, total deformation, and displacement on the Z axis. The BMC treatment was superior to ASC cells in bone tissue morphology, resembling the biomechanics of the control group in all FEA simulations.
Collapse
Affiliation(s)
- Cosmin Cosma
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (C.C.)
| | - Dragos Apostu
- Department of Orthopedics and Traumatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
| | - Cristian Vilau
- Department of Material Resistance, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Alexandru Popan
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (C.C.)
| | - Daniel Oltean-Dan
- Department of Orthopedics and Traumatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
| | - Nicolae Balc
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (C.C.)
| | - Gheorghe Tomoaie
- Department of Orthopedics and Traumatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Horea Benea
- Department of Orthopedics and Traumatology, Iuliu Haţieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Bong GSY, Lee YHD. Injectable Scaffold with Microfracture using the Autologous Matrix-Induced Chondrogenesis (AMIC) Technique: A Prospective Cohort Study. Malays Orthop J 2022; 16:86-93. [PMID: 36589380 PMCID: PMC9791906 DOI: 10.5704/moj.2211.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Autologous matrix-induced chondrogenesis (AMIC) is a one-step surgical cartilage repair procedure involving the insertion of a scaffold into the chondral defect after microfracture. BST-CarGel [Smith and Nephew, Watford, England] is an injectable chitosan-based scaffold which can more easily fill defects with irregular shapes and be used to treat vertical or roof chondral lesions. The study aims to evaluate the clinical outcomes of knee cartilage repair with microfracture surgery and BST-CarGel using the AMIC technique for a minimum of two years. Materials and methods A prospective study of patients undergoing cartilage repair with microfracture surgery and BST-CarGel at our institution from 2016 to 2019 was performed. Clinical outcomes were determined using the Lysholm Knee Scoring System and Knee Injury and Osteoarthritis Outcome Score (KOOS). These questionnaires were administered before the surgery and at a minimum of two years after surgery. Results A total of 21 patients were identified and recruited into the study. 31 cartilage defects were seen and treated in 21 knees. These included horizontal lesions (e.g., trochlear, lateral tibial plateau), vertical lesions (e.g., medial femoral condyle, lateral femoral condyle) and inverted lesions (e.g., patella). No complications or reoperations were seen in our study population. For the average duration of follow-up of 42.5±8.55 months, there was an average improvement in Lysholm score of 25.8±18.6 and an average improvement in KOOS score of 22.5±15.0. Conclusion BST-CarGel with microfracture surgery using the AMIC technique is a safe and effective treatment for cartilage defects in the short to medium term.
Collapse
Affiliation(s)
- GSY Bong
- Department of Orthopaedic Surgery, Tan Tock Seng Hospital, Singapore,Corresponding Author: Gerard Si Yong Bong, Department of Orthopaedic Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433
| | - YHD Lee
- Department of Orthopaedic Surgery, National University Hospital, Singapore
| |
Collapse
|
9
|
Moon SH, Choi HN, Yang YJ. Natural/Synthetic Polymer Materials for Bioink Development. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
11
|
Derwich M, Lassmann L, Machut K, Zoltowska A, Pawlowska E. General Characteristics, Biomedical and Dental Application, and Usage of Chitosan in the Treatment of Temporomandibular Joint Disorders: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14020305. [PMID: 35214037 PMCID: PMC8880239 DOI: 10.3390/pharmaceutics14020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review was to present research investigating chitosan, including its general characteristics, properties, and medical and dental applications, and finally to present the current state of knowledge regarding the efficacy of chitosan in the treatment of temporomandibular disorders (TMDs) based on the literature. The PICO approach was used for the literature search strategy. The PubMed database was analyzed with the following keywords: (“chitosan”[MeSH Terms] OR “chitosan”[All Fields] OR “chitosans”[All Fields] OR “chitosan s”[All Fields] OR “chitosane”[All Fields]) AND (“temporomandibular joint”[MeSH Terms] OR (“tem-poromandibular”[All Fields] AND “joint”[All Fields]) OR “temporomandibular joint”[All Fields] OR (“temporomandibular”[All Fields] AND “joints”[All Fields]) OR “temporo-mandibular joints”[All Fields]). After screening 8 results, 5 studies were included in this review. Chitosan presents many biological properties and therefore it can be widely used in several branches of medicine and dentistry. Chitosan promotes wound healing, helps to control bleeding, and is used in wound dressings, such as sutures and artificial skin. Apart from its antibacterial property, chitosan has many other properties, such as antifungal, mucoadhesive, anti-inflammatory, analgesic, antioxidant, antihyperglycemic, and antitumoral properties. Further clinical studies assessing the efficacy of chitosan in the treatment of TMD are required. According to only one clinical study, chitosan was effective in the treatment of TMD; however, better clinical results were obtained with platelet-rich plasma.
Collapse
Affiliation(s)
- Marcin Derwich
- ORTODENT, Specialist Orthodontic Private Practice in Grudziadz, 86-300 Grudziadz, Poland
- Correspondence: ; Tel.: +48-660-723-164
| | - Lukasz Lassmann
- Dental Sense, Dental Private Practice in Gdansk, 80-283 Gdansk, Poland;
| | - Katarzyna Machut
- Department of Endodontic Dentistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.M.); (A.Z.)
| | - Agata Zoltowska
- Department of Endodontic Dentistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.M.); (A.Z.)
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
12
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering. Stem Cells Int 2021; 2021:5590479. [PMID: 34912460 PMCID: PMC8668357 DOI: 10.1155/2021/5590479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.
Collapse
|
14
|
Ruediger T, Horbert V, Reuther A, Kumar Kalla P, Burgkart RH, Walther M, Kinne RW, Mika J. Thickness of the Stifle Joint Articular Cartilage in Different Large Animal Models of Cartilage Repair and Regeneration. Cartilage 2021; 13:438S-452S. [PMID: 33269611 PMCID: PMC8721693 DOI: 10.1177/1947603520976763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Regulatory guidelines for preclinical cartilage repair studies suggest large animal models (e.g., sheep, goat, [mini]-pig, or horse) to obtain results representative for humans. However, information about the 3-dimensional thickness of articular cartilage at different implantation sites in these models is limited. DESIGN To identify the most suitable site for experimental surgery, cartilage thickness at the medial femoral condyle (MFC), lateral femoral condyle (LFC), and trochlea in ovine, caprine, and porcine cadaver stifle joints was systematically measured using hematoxylin-eosin staining of 6 µm paraffin sections and software-based image analysis. RESULTS Regarding all ventral-dorsal regions of the MFC, goat showed the thickest articular cartilage (maximal mean thickness: 1299 µm), followed by sheep (1096 µm) and mini-pig (604 µm), with the highest values in the most ventral and dorsal regions. Also for the LFC, the most ventral regions showed the thickest cartilage in goat (maximal mean thickness: 1118 µm), followed by sheep (678 µm) and mini-pig (607 µm). Except for the mini-pig, however, the cartilage thickness on the LFC was consistently lower than that on the MFC. The 3 species also differed along the transversal measuring points on the MFC and LFC. In contrast, there were no consistent differences for the regional cartilage thickness of the trochlea among goat and sheep (≥780 µm) and mini-pig (≤500 µm). CONCLUSIONS Based on their cartilage thickness, experimental defects on goat and sheep MFC may be viable options for preclinical cartilage repair studies, in addition to well-established horse models.
Collapse
Affiliation(s)
- Tina Ruediger
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Anne Reuther
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Pavan Kumar Kalla
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Chair of
Orthopedics and Sport Orthopedics, Technische Universität München, Munich,
Germany
| | - Mario Walther
- Department of Medical Statistics,
Computer Sciences and Documentation, Jena University Hospital, Jena, Germany,Ernst-Abbe-Hochschule Jena, University
of Applied Sciences, Jena, Germany
| | - Raimund W. Kinne
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany,Raimund W. Kinne, Experimental Rheumatology
Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken
Eisenberg GmbH, Klosterlausnitzer Straße 81, Eisenberg, 07607, Germany.
| | - Joerg Mika
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH,
Eisenberg, Germany
| |
Collapse
|
15
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|
16
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
17
|
Saghati S, Rahbarghazi R, Baradar Khoshfetrat A, Moharamzadeh K, Tayefi Nasrabadi H, Roshangar L. Phenolated alginate-collagen hydrogel induced chondrogenic capacity of human amniotic mesenchymal stem cells. J Biomater Appl 2021; 36:789-802. [PMID: 34074175 DOI: 10.1177/08853282211021692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horseradish peroxidase (HRP)-catalyzed hydrogels are considered to be an important platform for tissue engineering applications. In this study, we investigated the chondrogenic capacity of phenolated (1.2%) alginate-(0.5%) collagen hydrogel on human amniotic mesenchymal stem cells after 21 days. Using NMR, FTIR analyses, and SEM imaging, we studied the phenolation and structure of alginate-collagen hydrogel. For physicochemical evaluations, gelation time, mechanical properties, swelling, and degradation rate were assessed. The survival rate was monitored using the MTT assay and DAPI staining. Western blotting was performed to measure the chondrogenic differentiation of cells. NMR showed successful phenolation of the alginate-collagen hydrogel. FTIR exhibited the interaction between the functional groups of collagen with phenolated alginate. SEM showed the existence of collagen microfibrils in the alginate-collagen hydrogel. Compared to phenolated alginate, the addition of collagen increased hydrogel elasticity by 10%. Both swelling rate and biodegradability were reduced in the presence of collagen. We noted an increased survival rate in phenolated alginate-collagen compared to the control cells (p < 0.05). Western blotting revealed the increase of chondrocyte-associated proteins such as SOX9 and COL2A1 in phenolated-alginate-collagen hydrogels after 21 days. These data showed that phenolated alginate-collagen hydrogel is an appropriate 3 D substrate to induce chondrogenic capacity of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects-An Experimental Animal Study. Polymers (Basel) 2021; 13:polym13081232. [PMID: 33920328 PMCID: PMC8069702 DOI: 10.3390/polym13081232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/22/2023] Open
Abstract
Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. In the medial part of the trochlea and on the medial condyle of the femur, we created artificial defects (6 × 3 mm2) with microfractures. In four experimental sheep, both defects were subsequently filled with the porous acellular polyhydroxybutyrate/chitosan (PHB/CHIT)-based implant. Two sheep had untreated defects. We evaluated the quality of the newly formed tissue in the femoral trochlea defect site using imaging (X-ray, Computer Tomography (CT), Magnetic Resonance Imaging (MRI)), macroscopic, and histological methods. Macroscopically, the surface of the treated regenerate corresponded to the niveau of the surrounding cartilage. X-ray examination 6 months after the implantation confirmed the restoration of the contour in the subchondral calcified layer and the advanced rate of bone tissue integration. The CT scan revealed a low regenerative potential in the bone zone of the defect compared to the cartilage zone. The percentage change in cartilage density at the defect site was not significantly different to the reference area (0.06–6.4%). MRI examination revealed that the healing osteochondral defect was comparable to the intact cartilage signal on the surface of the defect. Hyaline-like cartilage was observed in most of the treated animals, except for one, where the defect was repaired with fibrocartilage. Thus, the acellular, chitosan-based biomaterial is a promising biopolymer composite for the treatment of chondral and osteochondral defects of traumatic character. It has potential for further clinical testing in the orthopedic field, primarily with the combination of supporting factors.
Collapse
|
19
|
Versatile Use of Chitosan and Hyaluronan in Medicine. Molecules 2021; 26:molecules26041195. [PMID: 33672365 PMCID: PMC7926841 DOI: 10.3390/molecules26041195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Chitosan is industrially acquired by the alkaline N-deacetylation of chitin. Chitin belongs to the β-N-acetyl-glucosamine polymers, providing structure, contrary to α-polymers, which provide food and energy. Another β-polymer providing structure is hyaluronan. A lot of studies have been performed on chitosan to explore its industrial use. Since chitosan is biodegradable, non-toxic, bacteriostatic, and fungistatic, it has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes the main areas where these two biopolymers have an impact. The reviewed areas mostly cover most medical applications, along with non-medical applications, such as cosmetics.
Collapse
|
20
|
Rogina A, Pušić M, Štefan L, Ivković A, Urlić I, Ivanković M, Ivanković H. Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Ann Biomed Eng 2021; 49:1572-1586. [PMID: 33409853 DOI: 10.1007/s10439-020-02712-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
The treatment of cartilage defect remains a challenging issue in clinical practice. Chitosan-based materials have been recognized as a suitable microenvironment for chondrocyte adhesion, proliferation and differentiation forming articular cartilage. The use of nasal chondrocytes to culture articular cartilage on an appropriate scaffold emerged as a promising novel strategy for cartilage regeneration. Beside excellent properties, chitosan lacks in biological activity, such as RGD-sequences. In this work, we have prepared pure and protein-modified chitosan scaffolds of different deacetylation degree and molecular weight as platforms for the culture of sheep nasal chondrocytes. Fibronectin (FN) was chosen as an adhesive protein for the improvement of chitosan bioactivity. Prepared scaffolds were characterised in terms of microstructure, physical and biodegradation properties, while FN interactions with different chitosans were investigated through adsorption-desorption studies. The results indicated faster enzymatic degradation of chitosan scaffolds with lower deacetylation degree, while better FN interactions with material were achieved on chitosan with higher number of amine groups. Histological and immunohistochemical analysis of in vitro engineered cartilage grafts showed presence of hyaline cartilage produced by nasal chondrocytes.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia.
| | - Maja Pušić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia.
| | - Lucija Štefan
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001, Zagreb, Croatia
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, Sveti Duh 64, 10001, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
- University of Applied Health Sciences, Mlinarska cesta 38, 10001, Zagreb, Croatia
| | - Inga Urlić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| |
Collapse
|
21
|
Filová E, Tonar Z, Lukášová V, Buzgo M, Litvinec A, Rampichová M, Beznoska J, Plencner M, Staffa A, Daňková J, Soural M, Chvojka J, Malečková A, Králíčková M, Amler E. Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1504. [PMID: 32751860 PMCID: PMC7466545 DOI: 10.3390/nano10081504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.
Collapse
Affiliation(s)
- Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Zbyněk Tonar
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Věra Lukášová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Matěj Buzgo
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Andrej Litvinec
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Michala Rampichová
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Jiří Beznoska
- Hospital of Rudolfa and Stefanie, a. s., Máchova 400, 256 30 Benešov, Czech Republic;
| | - Martin Plencner
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Andrea Staffa
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Jana Daňková
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
| | - Jiří Chvojka
- Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Anna Malečková
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Milena Králíčková
- Institute of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Husova 3, 305 06 Pilsen, Czech Republic; (Z.T.); (A.M.); (M.K.)
| | - Evžen Amler
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic; (E.F.); (M.B.); (A.L.); (M.R.); (M.P.); (A.S.); (J.D.); (E.A.)
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
- Student Science s.r.o., Národních Hrdinů 279, Dolní Počernice, 190 12 Prague, Czech Republic
| |
Collapse
|
22
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ, Lee NY. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int J Pharm 2020; 581:119248. [PMID: 32240810 DOI: 10.1016/j.ijpharm.2020.119248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
An ideal scaffold for bone tissue engineering should have chondroinductive, biodegradable, and biocompatible properties, as well as the ability to absorb and slowly release the biological molecules. In order to develop such a system to support bone tissue regeneration, in the present study, we developed a three-dimensional poly(L-lactic-co-glycolic acid) (PLGA)/Polycaprolactone (PCL) nanohybrid scaffold embedded with PLGA macroparticles (MPs) conjugated with TGF-β3 for the growth and chondrogenic differentiation of human mesenchymal stem cells (hMSCs). First, a microfluidic device was used to fabricate porous PLGA MPs with the sizes ranging from 10 to 50 µm. Next, the PLGA MPs were loaded with TGF-β3, mixed with PCL solution, and then electrospun to obtain PLGA-TGF-β3 MPs/PCL nanohybrid scaffold. Our results demonstrated that PLGA MPs fabricated using a microfluidic-based approach exhibited enhanced conjugation of TGF-β3 with over 80% loading efficiency and sustained release of TGF-β3. Furthermore, the results of glycosaminoglycan (GAG) content measurement and Safranin O staining revealed that the PLGA-TGF-β3 MPs and PLGA-TGF-β3 MPs/PCL nanohybrid scaffold can promote the proliferation and chondrogenic differentiation of hMSCs in vitro. Therefore, the PLGA-TGF-β3 MPs/PCL nanohybrid scaffold could pave the way for cartilage regeneration and have wide applications in regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nguyen Xuan Thanh Le
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Thi Phuong Thuy Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon 22711, Republic of Korea.
| | - Sung-Jun Park
- School of Mechanical, Automotive and Aeronautical Engineering, Korea National University of Transportation, 50 Daehangno, Chungju, Chungbuk 27469, Republic of Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
24
|
Scognamiglio F, Travan A, Borgogna M, Donati I, Marsich E. Development of biodegradable membranes for the delivery of a bioactive chitosan‐derivative on cartilage defects: A preliminary investigation. J Biomed Mater Res A 2020; 108:1534-1545. [DOI: 10.1002/jbm.a.36924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Scognamiglio
- Department of Life SciencesUniversity of Trieste Trieste Italy
- Department of Medical, Surgical and Health SciencesUniversity of Trieste Trieste Italy
| | | | | | - Ivan Donati
- Department of Life SciencesUniversity of Trieste Trieste Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health SciencesUniversity of Trieste Trieste Italy
| |
Collapse
|
25
|
Roy H, Rahaman SA, Kumar TV, Nandi S. Current Development on Chitosan-based Antimicrobial Drug Formulations for the Wound Healing. Curr Drug Discov Technol 2020; 17:534-541. [PMID: 31971111 DOI: 10.2174/1570163817666200123122532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of β-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Shaik A Rahaman
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Theendra V Kumar
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
26
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
27
|
Olive M, Boyer C, Lesoeur J, Thorin C, Weiss P, Fusellier M, Gauthier O. Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Vet Surg 2020; 49:570-581. [PMID: 31916628 PMCID: PMC7154554 DOI: 10.1111/vsu.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN Experimental study. ANIMALS Ten adult female sheep. METHODS In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.
Collapse
Affiliation(s)
- Mélanie Olive
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Cécile Boyer
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Julie Lesoeur
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Chantal Thorin
- Department of Management and Statistics, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Pierre Weiss
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Marion Fusellier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Olivier Gauthier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| |
Collapse
|
28
|
Ibrahim MS, El-Wassefy NA, Farahat DS. Injectable Gels for Dental and Craniofacial Applications. APPLICATIONS OF BIOMEDICAL ENGINEERING IN DENTISTRY 2020:359-375. [DOI: 10.1007/978-3-030-21583-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs 2019; 17:E555. [PMID: 31569366 PMCID: PMC6835706 DOI: 10.3390/md17100555] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine with potential for various applications. Further development of the new 3D bioprinting field lies in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility. Natural polymers from marine resources have been attracting increasing attention in recent years, as they are biologically active and abundant when comparing to polymers from other resources. This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special attention is paid to the mechanisms, material requirements, and applications of commonly used 3D bioprinting technologies based on marine-derived resources. Commonly used marine materials for 3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are also discussed, especially in regards to their advantages and applications.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Dezhi Zhou
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Jianwei Chen
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xiuxiu Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Wenxiang Zhao
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Tao Xu
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Szychlinska MA, D'Amora U, Ravalli S, Ambrosio L, Di Rosa M, Musumeci G. Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration. Curr Pharm Biotechnol 2019; 20:32-46. [PMID: 30727886 DOI: 10.2174/1389201020666190206202048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common degenerative disease which involves articular cartilage, and leads to total joint disability in the advanced stages. Due to its avascular and aneural nature, damaged cartilage cannot regenerate itself. Stem cell therapy and tissue engineering represent a promising route in OA therapy, in which cooperation of mesenchymal stem cells (MSCs) and three-dimensional (3D) scaffolds contribute to cartilage regeneration. However, this approach still presents some limits such as poor mechanical properties of the engineered cartilage. The natural dynamic environment of the tissue repair process involves a collaboration of several signals expressed in the biological system in response to injury. For this reason, tissue engineering involving exogenous "influencers" such as mechanostimulation and functional biomolecule delivery systems (BDS), represent a promising innovative approach to improve the regeneration process. BDS provide a controlled release of biomolecules able to interact between them and with the injured tissue. Nano-dimensional BDS is the future hope for the design of personalized scaffolds, able to overcome the delivery problems. MSC-derived extracellular vesicles (EVs) represent an attractive alternative to BDS, due to their innate targeting abilities, immunomodulatory potential and biocompatibility. Future advances in cartilage regeneration should focus on multidisciplinary strategies such as modular assembly strategies, EVs, nanotechnology, 3D biomaterials, BDS, mechanobiology aimed at constructing the functional scaffolds for actively targeted biomolecule delivery. The aim of this review is to run through the different approaches adopted for cartilage regeneration, with a special focus on biomaterials, BDS and EVs explored in terms of their delivery potential, healing capabilities and mechanical features.
Collapse
Affiliation(s)
- Marta A Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy, 54, Mostra d'Oltremare Pad. 20, 80125, Naples, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, V.le J.F. Kennedy, 54, Mostra d'Oltremare Pad. 20, 80125, Naples, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia no. 87, Catania, Italy
| |
Collapse
|
31
|
Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019; 6:129-140. [PMID: 31198581 PMCID: PMC6547311 DOI: 10.1093/rb/rbz022] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints. Due to its avascular, aneural and non-lymphatic features, cartilage has limited self-regenerative properties. To date, the utilization of biomaterials to aid in cartilage regeneration, especially through the use of injectable scaffolds, has attracted considerable attention. Various materials, therapeutics and fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment to induce the formation of cartilaginous structures that have similar properties to the native tissues. In particular, the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent years with the aim of enhancing its therapeutic efficacy and improving its ease of administration. This review summarizes recent progress in these efforts, including the structural improvement of scaffolds, network cross-linking techniques and strategies for controlled release, which present new opportunities for the development of injectable scaffolds for cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| |
Collapse
|
32
|
Jia Z, Zhu F, Li X, Liang Q, Zhuo Z, Huang J, Duan L, Xiong J, Wang D. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:541-551. [DOI: 10.1016/j.msec.2019.01.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
33
|
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019; 20:1478-1492. [PMID: 30843390 DOI: 10.1021/acs.biomac.9b00043] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, 49 Huayuanbei Road, Beijing 100191, P. R. China
| | - Kaixuan Ren
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 West 34th Street, Los Angeles, California 90089, United States of America
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jianxun Ding
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
34
|
Tothova C, Mihajlovicova X, Novotny J, Nagy O, Giretova M, Kresakova L, Tomco M, Zert Z, Vilhanova Z, Varga M, Medvecky L, Petrovova E. The Serum Protein Profile and Acute Phase Proteins in the Postoperative Period in Sheep after Induced Articular Cartilage Defect. MATERIALS 2019; 12:ma12010142. [PMID: 30609876 PMCID: PMC6337335 DOI: 10.3390/ma12010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
Abstract
Although several new implants have been developed using animal studies for the treatment of osteochondral and cartilage defects, there is a lack of information on the possible metabolic and biochemical reactions of the body to the implantation of biomaterials and cartilage reconstruction. Therefore, this study was aimed at evaluating the serum protein pattern and the alterations in the concentrations of selected acute phase proteins in five clinically healthy female sheep before and after the reconstruction of experimentally induced articular cartilage defects using polyhydroxybutyrate/chitosan based biopolymer material. The concentrations of total serum proteins (TSP), protein fractions, and selected acute phase proteins-serum amyloid A (SAA), haptoglobin (Hp), and C-reactive protein (CRP)-were measured before and on days seven, 14, and 30 after the surgical intervention. The TSP concentrations showed no marked differences during the evaluated period. Albumin values decreased on day seven and day 14 after surgery. In the concentrations of α₁-, α₂-, β-, and γ₂-globulins, a gradual significant increase was observed during the postoperative period (p < 0.05). The γ₁-globulins decreased slightly seven days after surgery. The concentrations of SAA, Hp, and CRP increased significantly after the surgical intervention with a subsequent decrease on day 30. Presented results suggest marked alterations in the serum protein pattern after surgical intervention.
Collapse
Affiliation(s)
- Csilla Tothova
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Xenia Mihajlovicova
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Jaroslav Novotny
- Clinic of Swine, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Oskar Nagy
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Maria Giretova
- Institute of Materials Research SAS in Kosice, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Lenka Kresakova
- Institute of Anatomy, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Marek Tomco
- Institute of Anatomy, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Zdenek Zert
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Zuzana Vilhanova
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| | - Maros Varga
- Sport-Arthro Centre, Privat Hospital Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia.
| | - Lubomir Medvecky
- Institute of Materials Research SAS in Kosice, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia.
| |
Collapse
|
35
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. Int J Mol Sci 2018; 19:E2700. [PMID: 30208585 PMCID: PMC6164936 DOI: 10.3390/ijms19092700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
A correct articular cartilage ultrastructure regarding its structural components and cellularity is important for appropriate performance of tissue-engineered articular cartilage. Various scaffold-based, as well as scaffold-free, culture models have been under development to manufacture functional cartilage tissue. Even decellularized tissues have been considered as a potential choice for cellular seeding and tissue fabrication. Pore size, interconnectivity, and functionalization of the scaffold architecture can be varied. Increased mechanical function requires a dense scaffold, which also easily restricts cellular access within the scaffold at seeding. High pore size enhances nutrient transport, while small pore size improves cellular interactions and scaffold resorption. In scaffold-free cultures, the cells assemble the tissue completely by themselves; in optimized cultures, they should be able to fabricate native-like tissue. Decellularized cartilage has a native ultrastructure, although it is a challenge to obtain proper cellular colonization during cell seeding. Bioprinting can, in principle, provide the tissue with correct cellularity and extracellular matrix content, although it is still an open question as to how the correct molecular interaction and structure of extracellular matrix could be achieved. These are challenges facing the ongoing efforts to manufacture optimal articular cartilage.
Collapse
Affiliation(s)
- Mikko J Lammi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Juha Piltti
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
- Nordlab Kokkola, Keski-Pohjanmaa Central Hospital Soite, 40620 Kokkola, Finland.
| | - Juha Prittinen
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Chengjuan Qu
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| |
Collapse
|
37
|
Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A 2018; 106:2762-2776. [DOI: 10.1002/jbm.a.36449] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Pawe Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| |
Collapse
|
38
|
Ahmed S, Annu, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 2018; 116:849-862. [DOI: 10.1016/j.ijbiomac.2018.04.176] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
39
|
Nanomaterials/Nanocomposites for Osteochondral Tissue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:79-95. [PMID: 29691818 DOI: 10.1007/978-3-319-76711-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
For many years, the avascular nature of cartilage tissue has posed a clinical challenge for replacement, repair, and reconstruction of damaged cartilage within the human body. Injuries to cartilage and osteochondral tissues can be due to osteoarthritis, sports, aggressive cancers, and repetitive stresses and inflammation on wearing tissue. Due to its limited capacity for regeneration or repair, there is a need for suitable material systems which can recapitulate the function of the native osteochondral tissue physically, mechanically, histologically, and biologically. Tissue engineering (TE) approaches take advantage of principles of biomedical engineering, clinical medicine, and cell biology to formulate, functionalize, and apply biomaterial scaffolds to aid in the regeneration and repair of tissues. Nanomaterial science has introduced new methods for improving and fortifying TE scaffolds, and lies on the forefront of cutting-edge TE strategies. These nanomaterials enable unique properties directly correlated to their sub-micron dimensionality including structural and cellular advantages. Examples include electrospun nanofibers and emulsion nanoparticles which provide nanoscale features for biomaterials, more closely replicating the 3D extracellular matrix, providing better cell adhesion, integration, interaction, and signaling. This chapter aims to provide a detailed overview of osteochondral regeneration and repair using TE strategies with a focus on nanomaterials and nanocomposites.
Collapse
|
40
|
Faivre J, Sudre G, Montembault A, Benayoun S, Banquy X, Delair T, David L. Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. SOFT MATTER 2018; 14:2068-2076. [PMID: 29484334 DOI: 10.1039/c8sm00215k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe the fabrication of physical chitosan hydrogels exhibiting a layered structure. This bilayered structure, as shown by SEM and confocal microscopy, is composed of a thin dense superficial zone (SZ), covering a deeper zone (DZ) containing microchannels orientated perpendicularly to the SZ. We show that such structure favors diffusion of macromolecules within the hydrogel matrix up to a critical pressure, σc, above which channels were constricted. Moreover, we found that the SZ provided a higher wear resistance than the DZ which was severely damaged at a pressure equal to the elastic modulus of the gel. The coefficient of friction (CoF) of the SZ remained independent of the applied load with μSZ = 0.38 ± 0.02, while CoF measured at DZ exhibited two regimes: an initial CoF close to the value found on the SZ, and a CoF that decreased to μDZ = 0.18 ± 0.01 at pressures higher than the critical pressure σc. Overall, our results show that internal structuring is a promising avenue in controlling and improving the wear resistance of soft materials such as hydrogels.
Collapse
Affiliation(s)
- Jimmy Faivre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IMP, UMR 5223, 15 Boulevard Latarjet, F-69622, Villeurbanne, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Li Z, Niu N, Zou J, Liu F. A simple coordination strategy for preparing a complex hydrophobic association hydrogel. J Appl Polym Sci 2018. [DOI: 10.1002/app.46400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yudong Liu
- College of Chemistry, Jilin University; Changchun 130012 China
| | - Zhiying Li
- College of Chemistry, Jilin University; Changchun 130012 China
| | - Na Niu
- College of Chemistry, Jilin University; Changchun 130012 China
| | - Jiayun Zou
- College of Chemistry, Jilin University; Changchun 130012 China
| | - Fengqi Liu
- College of Chemistry, Jilin University; Changchun 130012 China
| |
Collapse
|
42
|
Deng A, Kang X, Zhang J, Yang Y, Yang S. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1147-1154. [DOI: 10.1016/j.msec.2017.04.109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
43
|
Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017. [PMID: 28639943 DOI: 10.1088/1758-5090/aa7b1d] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in alginate and chitosan hydrogels improved cell viability, proliferation and osteogenic differentiation.
Collapse
|
44
|
Rothan HA, Mahmod SA, Djordjevic I, Golpich M, Yusof R, Snigh S. Polycaprolactone Triol-Citrate Scaffolds Enriched with Human Platelet Releasates Promote Chondrogenic Phenotype and Cartilage Extracellular Matrix Formation. Tissue Eng Regen Med 2017; 14:93-101. [PMID: 30603466 PMCID: PMC6171579 DOI: 10.1007/s13770-017-0023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 10/20/2022] Open
Abstract
In this paper we report the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes within elastomeric polycaprolactone triol-citrate (PCLT-CA) porous scaffold. Human-derived chondrocyte cellular content of glycosaminoglycans (GAGs) and total collagen were determined after seeding into PCLT-CA scaffold enriched with PRPr cells. Immunostaining and real time PCR was applied to evaluate the expression levels of chondrogenic and extracellular gene markers. Seeding of chondrocytes into PCLT-CA scaffold enriched with PRPr showed significant increase in total collagen and GAGs production compared with chondrocytes grown within control scaffold without PRPr cells. The mRNA levels of collagen II and SOX9 increased significantly while the upregulation in Cartilage Oligomeric Matrix Protein (COMP) expression was statistically insignificant. We also report the reduction of the expression levels of collagen I and III in chondrocytes as a consequence of proximity to PRPr cells within the scaffold. Interestingly, the pre-loading of PRPr caused an increase of expression levels of following extracellular matrix (ECM) proteins: fibronectin, laminin and integrin β over the period of 3 days. Overall, our results introduce the PCLT-CA elastomeric scaffold as a new system for cartilage tissue engineering. The method of PRPr cells loading prior to chondrocyte culture could be considered as a potential environment for cartilage tissue engineering as the differentiation and ECM formation is enhanced significantly.
Collapse
Affiliation(s)
- Hussin A. Rothan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suhaeb A. Mahmod
- Department of Orthopedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivan Djordjevic
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Mojtaba Golpich
- Department of Medicine, Faculty of Medicine, University of Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Simmrat Snigh
- Department of Orthopedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Del Giudice F, Tassieri M, Oelschlaeger C, Shen AQ. When Microrheology, Bulk Rheology, and Microfluidics Meet: Broadband Rheology of Hydroxyethyl Cellulose Water Solutions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Francesco Del Giudice
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
| | - Manlio Tassieri
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Claude Oelschlaeger
- Institute
for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Strasse 3, 76131 Karlsruhe, Germany
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
| |
Collapse
|
46
|
He Z, Wang B, Hu C, Zhao J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloids Surf B Biointerfaces 2017; 154:33-39. [PMID: 28288340 DOI: 10.1016/j.colsurfb.2017.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Drug administration by intra-articular injection is an emerging popular treatment for knee osteoarthritis (OA). This method of drug administration minimizes the toxic effects of the drugs administered systemically, and maximizes local effects. However, traditional oral drugs delivered via intra-articular injection are limited by the lack of sustained release. Injectable materials such as hydrogels or hydrogel microspheres have been extensively studied for their applications as intra-articular injection for the treatment of OA, which is attribute to their minimally invasive manner, extended drug retention time and high loading efficiency. In this review, we summarized hydrogel types and hydrogel characteristics for intra-articular injection, and the drugs, proteins and cells used in the injectable delivery systems. Through this review, we hope to inspire researchers to construct novel hydrogel-based delivery system for the intra-articular injection treatment of knee OA.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Beiyue Wang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Changmin Hu
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
47
|
Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials 2017; 126:18-30. [PMID: 28242519 DOI: 10.1016/j.biomaterials.2017.02.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm3 in Ch1 to 0.11 mJ/mm3 in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Molecular and Cell Biology Laboratory, Department of Pathology, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad M Dehghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Takei T, Yoshitomi H, Fukumoto K, Danjo S, Yoshinaga T, Nishimata H, Yoshida M. Toxic Chemical Cross-linker-free Cryosponges Made from Chitosan-Gluconic Acid Conjugate for Chondrocyte Culture. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Hiroki Yoshitomi
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Kohei Fukumoto
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - So Danjo
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | | | | | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
49
|
Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. J Mech Behav Biomed Mater 2016; 64:161-72. [DOI: 10.1016/j.jmbbm.2016.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
|
50
|
Barabadi Z, Azami M, Sharifi E, Karimi R, Lotfibakhshaiesh N, Roozafzoon R, Joghataei MT, Ai J. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1137-46. [DOI: 10.1016/j.msec.2016.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
|