1
|
Said O, Schock J, Abrar DB, Schad P, Kuhl C, Nolte T, Knobe M, Prescher A, Truhn D, Nebelung S. In-Situ Cartilage Functionality Assessment Based on Advanced MRI Techniques and Precise Compartmental Knee Joint Loading through Varus and Valgus Stress. Diagnostics (Basel) 2021; 11:diagnostics11081476. [PMID: 34441410 PMCID: PMC8391314 DOI: 10.3390/diagnostics11081476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Stress MRI brings together mechanical loading and MRI in the functional assessment of cartilage and meniscus, yet lacks basic scientific validation. This study assessed the response-to-loading patterns of cartilage and meniscus incurred by standardized compartmental varus and valgus loading of the human knee joint. Eight human cadaveric knee joints underwent imaging by morphologic (i.e., proton density-weighted fat-saturated and 3D water-selective) and quantitative (i.e., T1ρ and T2 mapping) sequences, both unloaded and loaded to 73.5 N, 147.1 N, and 220.6 N of compartmental pressurization. After manual segmentation of cartilage and meniscus, morphometric measures and T2 and T1ρ relaxation times were quantified. CT-based analysis of joint alignment and histologic and biomechanical tissue measures served as references. Under loading, we observed significant decreases in cartilage thickness (p < 0.001 (repeated measures ANOVA)) and T1ρ relaxation times (p = 0.001; medial meniscus, lateral tibia; (Friedman test)), significant increases in T2 relaxation times (p ≤ 0.004; medial femur, lateral tibia; (Friedman test)), and adaptive joint motion. In conclusion, varus and valgus stress MRI induces meaningful changes in cartilage and meniscus secondary to compartmental loading that may be assessed by cartilage morphometric measures as well as T2 and T1ρ mapping as imaging surrogates of tissue functionality.
Collapse
Affiliation(s)
- Oliver Said
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
- Correspondence:
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Philipp Schad
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Teresa Nolte
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Matthias Knobe
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000, Lucerne, Switzerland;
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (O.S.); (P.S.); (C.K.); (T.N.); (D.T.); (S.N.)
| |
Collapse
|
2
|
Jerban S, Ma Y, Kasibhatla A, Wu M, Szeverenyi N, Guma M, Covey D, D'lima D, Ward SR, Sah RL, Chang EY, Du J, Chung CB. Ultrashort echo time adiabatic T 1ρ (UTE-Adiab-T 1ρ) is sensitive to human cadaveric knee joint deformation induced by mechanical loading and unloading. Magn Reson Imaging 2021; 80:98-105. [PMID: 33945858 PMCID: PMC10858706 DOI: 10.1016/j.mri.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T2 relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T1ρ preparation (UTE-Adiab-T1ρ) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T1ρ to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints. METHODS Eight knee joints from young (42 ± 12 years at death) donors were evaluated on a 3 T scanner using the UTE-Adiab-T1ρ sequence under four sequential loading conditions: load = 0 N (Load0), load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-Adiab-T1ρ was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an experienced MR scientist. The Kruskal-Wallis test, with corrected significance level for multiple comparisons, was used to examine the UTE-Adiab-T1ρ differences between different loading conditions. RESULTS UTE-Adiab-T1ρ decreased in all grouped ROIs under both Load1 and Load2 conditions (-18.7% and - 16.9% for M, -18.8% and - 12.6% for FAC, -21.4% and - 10.7% for TAC, -26.2% and - 13.9% for AC-UC, and - 16.9% and - 10.7% for AC-MC). After unloading, average UTE-Adiab-T1ρ increased across all ROIs and within a lower range compared with the average UTE-Adiab-T1ρ decreases induced by the two previous loading conditions. The loading-induced differences were statistically non-significant. CONCLUSIONS While UTE-Adiab-T1ρ reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T1ρ within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T1ρ technique as an imaging marker of tissue function for detecting deformation patterns under loading.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Akhil Kasibhatla
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Dana Covey
- Orthopaedic Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, CA, USA
| | - Darryl D'lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, CA, USA
| | - Samuel R Ward
- Department of Orthopedic Surgery, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Robert L Sah
- Department of Orthopedic Surgery, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Truhn D, Zwingenberger KT, Schock J, Abrar DB, Radke KL, Post M, Linka K, Knobe M, Kuhl C, Nebelung S. No pressure, no diamonds? - Static vs. dynamic compressive in-situ loading to evaluate human articular cartilage functionality by functional MRI. J Mech Behav Biomed Mater 2021; 120:104558. [PMID: 33957568 DOI: 10.1016/j.jmbbm.2021.104558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Biomechanical Magnetic Resonance Imaging (MRI) of articular cartilage, i.e. its imaging under loading, is a promising diagnostic tool to assess the tissue's functionality in health and disease. This study aimed to assess the response to static and dynamic loading of histologically intact cartilage samples by functional MRI and pressure-controlled in-situ loading. To this end, 47 cartilage samples were obtained from the medial femoral condyles of total knee arthroplasties (from 24 patients), prepared to standard thickness, and placed in a standard knee joint in a pressure-controlled whole knee-joint compressive loading device. Cartilage samples' responses to static (i.e. constant), dynamic (i.e. alternating), and no loading, i.e. free-swelling conditions, were assessed before (δ0), and after 30 min (δ1) and 60 min (δ2) of loading using serial T1ρ maps acquired on a 3.0T clinical MRI scanner (Achieva, Philips). Alongside texture features, relative changes in T1ρ (Δ1, Δ2) were determined for the upper and lower sample halves and the entire sample, analyzed using appropriate statistical tests, and referenced to histological (Mankin scoring) and biomechanical reference measures (tangent stiffness). Histological, biomechanical, and T1ρ sample characteristics at δ0 were relatively homogenous in all samples. In response to loading, relative increases in T1ρ were strong and significant after dynamic loading (Δ1 = 10.3 ± 17.0%, Δ2 = 21.6 ± 21.8%, p = 0.002), while relative increases in T1ρ after static loading and in controls were moderate and not significant. Generally, texture features did not demonstrate clear loading-related associations underlying the spatial relationships of T1ρ. When realizing the clinical translation, this in-situ study suggests that serial T1ρ mapping is best combined with dynamic loading to assess cartilage functionality in humans based on advanced MRI techniques.
Collapse
Affiliation(s)
- Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Ken Tonio Zwingenberger
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Justus Schock
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074, Aachen, Germany
| | - Daniel Benjamin Abrar
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Karl Ludger Radke
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Kevin Linka
- Hamburg University of Technology, Department of Continuum and Materials Mechanics, D-21073, Hamburg, Germany
| | - Matthias Knobe
- Cantonal Hospital Lucerne, Department of Orthopaedic and Trauma Surgery, CH-6000, Lucerne, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Sven Nebelung
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Huppertz MS, Schock J, Radke KL, Abrar DB, Post M, Kuhl C, Truhn D, Nebelung S. Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life (Basel) 2021; 11:life11030201. [PMID: 33807740 PMCID: PMC8000874 DOI: 10.3390/life11030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Traumatic cartilage injuries predispose articulating joints to focal cartilage defects and, eventually, posttraumatic osteoarthritis. Current clinical-standard imaging modalities such as morphologic MRI fail to reliably detect cartilage trauma and to monitor associated posttraumatic degenerative changes with oftentimes severe prognostic implications. Quantitative MRI techniques such as T2 mapping are promising in detecting and monitoring such changes yet lack sufficient validation in controlled basic research contexts. Material and Methods: 35 macroscopically intact cartilage samples obtained from total joint replacements were exposed to standardized injurious impaction with low (0.49 J, n = 14) or high (0.98 J, n = 14) energy levels and imaged before and immediately, 24 h, and 72 h after impaction by T2 mapping. Contrast, homogeneity, energy, and variance were quantified as features of texture on each T2 map. Unimpacted controls (n = 7) and histologic assessment served as reference. Results: As a function of impaction energy and time, absolute T2 values, contrast, and variance were significantly increased, while homogeneity and energy were significantly decreased. Conclusion: T2 mapping and texture feature analysis are sensitive diagnostic means to detect and monitor traumatic impaction injuries of cartilage and associated posttraumatic degenerative changes and may be used to assess cartilage after trauma to identify “cartilage at risk”.
Collapse
Affiliation(s)
- Marc Sebastian Huppertz
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
- Correspondence:
| |
Collapse
|
5
|
Hafner T, Post M, Said O, Schad P, Schock J, Abrar DB, Knobe M, Kuhl C, Truhn D, Nebelung S. Identifying the imaging correlates of cartilage functionality based on quantitative MRI mapping - The collagenase exposure model. Acta Biomater 2020; 117:310-321. [PMID: 32980541 DOI: 10.1016/j.actbio.2020.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
Cartilage functionality is determined by tissue structure and composition. If altered, cartilage is predisposed to premature degeneration. This pathomimetical study of early osteoarthritis evaluated the dose-dependant effects of collagenase-induced collagen disintegration and proteoglycan depletion on cartilage functionality as assessed by serial T1, T1ρ, T2, and T2* mapping under loading. 30 human femoral osteochondral samples underwent imaging on a clinical 3.0 T MRI scanner (Achieva, Philips) in the unloaded reference configuration (δ0) and under pressure-controlled quasi-static indentation loading to 15.1 N (δ1) and to 28.6 N (δ2). Imaging was performed before and after exposure to low (LC, 0.5 mg/mL; n = 10) or high concentration (HC, 1.5 mg/mL; n = 10) of collagenase. Untreated samples served as controls (n = 10). Loading responses were determined for the entire sample and the directly loaded (i.e. sub-pistonal) and bilaterally adjacent (i.e. peri‑pistonal) regions, referenced histologically, quantified as relative changes, and analysed using adequate parametric and non-parametric statistical tests. Dose-dependant surface disintegration and tissue loss were reflected by distinctly different pre- and post-exposure response-to-loading patterns. While T1 generally decreased with loading, regardless of collagenase exposure, T1ρ increased significantly after HC exposure (p = 0.008). Loading-induced decreases in T2 were significant after LC exposure (p = 0.006), while changes in T2* were ambiguous. In conclusion, aberrant loading-induced changes in T2 and T1ρ reflect moderate and severe matrix changes, respectively, and indicate the close interrelatedness of matrix changes and functionality in cartilage.
Collapse
Affiliation(s)
- Tobias Hafner
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Oliver Said
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Philipp Schad
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Justus Schock
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany; Institute of Computer Vision and Imaging, RWTH University Aachen, D-52074 Aachen, Germany
| | - Daniel Benjamin Abrar
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, CH-6004 Luzern, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Sven Nebelung
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| |
Collapse
|
6
|
Schad P, Wollenweber M, Thüring J, Schock J, Eschweiler J, Palm G, Radermacher K, Eckstein F, Prescher A, Kuhl C, Truhn D, Nebelung S. Magnetic resonance imaging of human knee joint functionality under variable compressive in-situ loading and axis alignment. J Mech Behav Biomed Mater 2020; 110:103890. [DOI: 10.1016/j.jmbbm.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
7
|
Hafner T, Schock J, Post M, Abrar DB, Sewerin P, Linka K, Knobe M, Kuhl C, Truhn D, Nebelung S. A serial multiparametric quantitative magnetic resonance imaging study to assess proteoglycan depletion of human articular cartilage and its effects on functionality. Sci Rep 2020; 10:15106. [PMID: 32934341 PMCID: PMC7492285 DOI: 10.1038/s41598-020-72208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Water, collagen, and proteoglycans determine articular cartilage functionality. If altered, susceptibility to premature degeneration is increased. This study investigated the effects of enzymatic proteoglycan depletion on cartilage functionality as assessed by advanced Magnetic Resonance Imaging (MRI) techniques under standardized loading. Lateral femoral condylar cartilage-bone samples from patients undergoing knee replacement (n = 29) were serially imaged by Proton Density-weighted and T1, T1ρ, T2, and T2* mapping sequences on a clinical 3.0 T MRI scanner (Achieva, Philips). Using pressure-controlled indentation loading, samples were imaged unloaded and quasi-statically loaded to 15.1 N and 28.6 N, and both before and after exposure to low-concentrated (LT, 0.1 mg/mL, n = 10) or high-concentrated trypsin (HT, 1.0 mg/mL, n = 10). Controls were not treated (n = 9). Responses to loading were assessed for the entire sample and regionally, i.e. sub- and peri-pistonally, and zonally, i.e. upper and lower sample halves. Trypsin effects were quantified as relative changes (Δ), analysed using appropriate statistical tests, and referenced histologically. Histological proteoglycan depletion was reflected by significant sub-pistonal decreases in T1 (p = 0.003) and T2 (p = 0.008) after HT exposure. Loading-induced changes in T1ρ and T2* were not related. In conclusion, proteoglycan depletion alters cartilage functionality and may be assessed using serial T1 and T2 mapping under loading.
Collapse
Affiliation(s)
- Tobias Hafner
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.,Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Benjamin Abrar
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Philipp Sewerin
- Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kevin Linka
- Department of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, Luzern, Switzerland
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.
| |
Collapse
|
8
|
Said O, Schock J, Krämer N, Thüring J, Hitpass L, Schad P, Kuhl C, Abrar D, Truhn D, Nebelung S. An MRI-compatible varus-valgus loading device for whole-knee joint functionality assessment based on compartmental compression: a proof-of-concept study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:839-854. [PMID: 32314105 PMCID: PMC8302563 DOI: 10.1007/s10334-020-00844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Beyond static assessment, functional techniques are increasingly applied in magnetic resonance imaging (MRI) studies. Stress MRI techniques bring together MRI and mechanical loading to study knee joint and tissue functionality, yet prototypical axial compressive loading devices are bulky and complex to operate. This study aimed to design and validate an MRI-compatible pressure-controlled varus-valgus loading device that applies loading along the joint line. METHODS Following the device's thorough validation, we demonstrated proof of concept by subjecting a structurally intact human cadaveric knee joint to serial imaging in unloaded and loaded configurations, i.e. to varus and valgus loading at 7.5 kPa (= 73.5 N), 15 kPa (= 147.1 N), and 22.5 kPa (= 220.6 N). Following clinical standard (PDw fs) and high-resolution 3D water-selective cartilage (WATSc) sequences, we performed manual segmentations and computations of morphometric cartilage measures. We used CT and radiography (to quantify joint space widths) and histology and biomechanics (to assess tissue quality) as references. RESULTS We found (sub)regional decreases in cartilage volume, thickness, and mean joint space widths reflective of areal pressurization of the medial and lateral femorotibial compartments. DISCUSSION Once substantiated by larger sample sizes, varus-valgus loading may provide a powerful alternative stress MRI technique.
Collapse
Affiliation(s)
- Oliver Said
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Nils Krämer
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Philipp Schad
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
- Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Functional MRI Mapping of Human Meniscus Functionality and its Relation to Degeneration. Sci Rep 2020; 10:2499. [PMID: 32051526 PMCID: PMC7016001 DOI: 10.1038/s41598-020-59573-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Meniscus pathology may promote early osteoarthritis. This study assessed human meniscus functionality (i.e. its response to loading) ex vivo based on quantitative T1, T1ρ, and T2 mapping as a function of histological degeneration and loading. Forty-five meniscus samples of variable degeneration were harvested from the lateral meniscus body region of 45 patients during total knee arthroplasties. Samples underwent serial mapping on a 3.0-T MRI scanner (Achieva, Philips) using a force-controlled and torque-inducing compressive loading device. Samples were measured at three loading positions, i.e. unloaded, loaded to 2 bar (compression force 37 N) and 4 bar (69 N). Histology (Pauli classification) and biomechanics (Elastic Modulus) served as references. Based on histology, samples were trichotomized as grossly intact (n = 14), mildly degenerative (n = 16), and moderate-to-severely degenerative (n = 15) and analyzed using appropriate parametric and non-parametric tests. For T1, we found loading-induced decreases in all samples, irrespective of degeneration. For T1ρ, zonal increases in intact (apex) and decreases in degenerative samples (base) were found, while for T2, changes were ambiguous. In conclusion, force-controlled loading and serial MR imaging reveal response-to-loading patterns in meniscus. Zonal T1ρ response-to-loading patterns are most promising in differentiating degeneration, while T1 and T2 aren’t clearly related to degeneration.and may provide an imaging-based indication of functional tissue properties.
Collapse
|