1
|
Lin J, Zamani M, Kalia V, Vasarhelyi EM, Lanting BA, Teeter MG. Assessing implant position and bone properties after cementless total knee arthroplasty using weight-bearing computed tomography. BMC Musculoskelet Disord 2025; 26:477. [PMID: 40375231 PMCID: PMC12079833 DOI: 10.1186/s12891-025-08718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Weight-bearing CT (WBCT) scanners are growing in availability and provide the capability of three-dimensional imaging while a joint is under load. This may be particularly useful in relation to personalized total knee arthroplasty (TKA) with cementless implants. The objective of the present study was to evaluate the utility and inter-observer repeatability of WBCT in assessing patients with cementless TKA in a loaded position. METHODS Forty patients who underwent primary TKA approximately 3 years previously and received one of two cementless implant systems were recruited, including two subjects with bilateral TKA, for a total of 42 knees. All subjects underwent examination of their knee with WBCT while standing, thereby loading the indicated knee. Lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), hip-knee-ankle angle (HKAA), and joint line obliquity (JLO) were measured on full length radiographs and the WBCT exams by two observers. Femoral and tibial component rotation was measured on WBCT. Greyscale values representing bone density were assessed in five identically sized regions of interests in both the femur and the tibia on WBCT. RESULTS Inter-observer agreement for alignment was good (95% ICC: 0.87). Inter-observer agreement for femoral component rotation was moderate (95% ICC: 0.67) and for tibial component rotation was good (95% ICC: 0.84). Inter-observer agreement for femoral greyscale values was good (95% ICC: 0.87) and for tibial greyscale values was excellent (95% ICC: 0.97). CONCLUSION Cementless TKA can be assessed postoperatively using WBCT to measure implant position and bone density in a functional, loaded joint position with good inter-observer repeatability.
Collapse
Affiliation(s)
- Jane Lin
- Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Mariam Zamani
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Vishal Kalia
- Department of Medical Imaging, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward M Vasarhelyi
- Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Brent A Lanting
- Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Matthew G Teeter
- Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Department of Medical Imaging, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Smith JR, Bharath BK, Mallinson MA, Mason K, Snaith B. Cone beam CT in the imaging of musculoskeletal trauma: a scoping review. Skeletal Radiol 2025:10.1007/s00256-025-04947-w. [PMID: 40369229 DOI: 10.1007/s00256-025-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Cone beam computed tomography (CBCT) is an emerging technology in musculoskeletal (MSK) imaging. The objective of this scoping review was to provide an overview of the research surrounding CBCT utility in bony injury assessment as an alternative to other imaging modalities and investigate any gaps in the current evidence base. METHODS MEDLINE, CINAHL, and PubMed were searched up to January 2025 for articles including CBCT studies on human participants following trauma. An online literature review tool was used to manage and streamline the review process. RESULTS The search yielded 23 studies. The image quality and diagnostic accuracy of CBCT were high overall, and a number of studies confirmed the radiation dose to be lower than multislice CT. Studies examined CBCT for extremity trauma, with half the studies focused solely on the wrist. The utility appears greatest in the identification of radiographically occult fractures. Limited cost-effectiveness analysis has been undertaken. CONCLUSIONS Overall, the literature suggests CBCT can be an effective tool in the diagnosis of bony injuries with greater sensitivity than radiography at a lower radiation dose than multi-slice computed tomography. However, evaluation of wider patient and economic impacts of adopting CBCT in MSK trauma pathways is recommended.
Collapse
Affiliation(s)
- Jessica R Smith
- Mid Yorkshire Teaching NHS Trust, Aberford Road, Wakefield, West Yorkshire, WF1 4DG, UK
- Keele University, Staffordshire, ST5 5BG, UK
| | - Balvinder K Bharath
- Mid Yorkshire Teaching NHS Trust, Aberford Road, Wakefield, West Yorkshire, WF1 4DG, UK
- University of Leeds, Woodhouse, Leeds, LS2 9 JT, UK
| | - Martine A Mallinson
- Mid Yorkshire Teaching NHS Trust, Aberford Road, Wakefield, West Yorkshire, WF1 4DG, UK
| | - Kim Mason
- Mid Yorkshire Teaching NHS Trust, Aberford Road, Wakefield, West Yorkshire, WF1 4DG, UK
| | - Beverly Snaith
- Mid Yorkshire Teaching NHS Trust, Aberford Road, Wakefield, West Yorkshire, WF1 4DG, UK.
- University of Bradford, Bradford, West Yorkshire, BD7 1DB, UK.
| |
Collapse
|
3
|
Lisonbee RJ, Peterson AC, Lenz AL. Correspondence model-based approach for evaluating static and dynamic joint distance measurements. Comput Methods Biomech Biomed Engin 2025:1-16. [PMID: 40109025 DOI: 10.1080/10255842.2025.2478527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Evaluations of 3D joint space measurements between study groups have traditionally relied on surface regional divisions, which attenuate the impact of shape on joint measurements. Advancements in morphometric analyses have enabled evaluation of population-based shape variations as they relate to disease progression and deformity. Specifically, correspondence model-based shape analyses offer co-registered landmarks that address shape variability in joint structures and can be utilized for comparison of joint space measurements. This study proposes a method using correspondence models to perform group-wise statistical analyses in static or quasi-static positions during movement, offering a more comprehensive assessment of joint space variability. The primary objective was to verify and validate the measurement methods of a developed open-source toolbox. Testing was performed with surface meshes of varying edge length (0.5-, 1-, and 2-mm) and with different expected joint space distances (1- and 4-mm). Validation testing of accuracy revealed <1% error for 0.5- and 1-mm mesh edge lengths for 4 mm joint space, sensitivity testing demonstrated best results for 0.5 mm edge length, and repeatable/reliable measurements yielded low coefficient of variation and high intraclass correlation coefficient. These findings support the use of correspondence model-based approaches for robust and accurate analysis of joint measurements related to anatomical features. This method addresses limitations in traditional techniques by incorporating shape variability, providing a practical tool for assessing joint-level disease and deformity. Future work will focus on evaluating the application of this approach in diverse clinical scenarios, including highly deformed joint structures.
Collapse
Affiliation(s)
- Rich J Lisonbee
- Department of Orthopaedics, University of Utah, Salt Lake City, USA
| | | | - Amy L Lenz
- Department of Orthopaedics, University of Utah, Salt Lake City, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Fritz J, Rashidi A, de Cesar Netto C. Magnetic Resonance Imaging of Total Ankle Arthroplasty: State-of-The-Art Assessment of Implant-Related Pain and Dysfunction. Clin Podiatr Med Surg 2024; 41:619-647. [PMID: 39237176 DOI: 10.1016/j.cpm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Total ankle arthroplasty (TAA) is an effective alternative for treating patients with end-stage ankle degeneration, improving mobility, and providing pain relief. Implant survivorship is constantly improving; however, complications occur. Many causes of pain and dysfunction after total ankle arthroplasty can be diagnosed accurately with clinical examination, laboratory, radiography, and computer tomography. However, when there are no or inconclusive imaging findings, magnetic resonance imaging (MRI) is highly accurate in identifying and characterizing bone resorption, osteolysis, infection, osseous stress reactions, nondisplaced fractures, polyethylene damage, nerve injuries and neuropathies, as well as tendon and ligament tears. Multiple vendors offer effective, clinically available MRI techniques for metal artifact reduction MRI of total ankle arthroplasty. This article reviews the MRI appearances of common TAA implant systems, clinically available techniques and protocols for metal artifact reduction MRI of TAA implants, and the MRI appearances of a broad spectrum of TAA-related complications.
Collapse
Affiliation(s)
- Jan Fritz
- Department of Orthopedic Surgery, Division of Foot and Ankle Surgery, Duke University, Durham, NC, USA.
| | - Ali Rashidi
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY 10016, USA
| | - Cesar de Cesar Netto
- Department of Radiology, Molecular Imaging Program at StanDepartment of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Bernasconi A, Dechir Y, Izzo A, D’Agostino M, Magliulo P, Smeraglia F, de Cesar Netto C, International Weightbearing CT Society, Lintz F. Trends in the Use of Weightbearing Computed Tomography. J Clin Med 2024; 13:5519. [PMID: 39337007 PMCID: PMC11432607 DOI: 10.3390/jcm13185519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: This review aimed to critically appraise the most recent orthopedic literature around cone beam weightbearing computed tomography (WBCT), summarizing what evidence has been provided so far and identifying the main research trends in the area. Methods: This scoping review was performed on studies published between January 2013 and December 2023 on the Pubmed database. All studies (both clinical and nonclinical) in which WBCT had been used were critically analyzed to extract the aim (or aims) of the study, and the main findings related to the role of this imaging modality in the diagnostic pathway. Results: Out of 1759 studies, 129 were selected. One hundred five manuscripts (81%) dealt with elective orthopedic conditions. The majority of the analyses (88 studies; 84%) were performed on foot and ankle conditions, while 13 (12%) studies looked at knee pathologies. There was a progressive increase in the number of studies published over the years. Progressive Collapsing Foot Deformity (22 studies; 25%) and Hallux Valgus (19 studies; 21%) were frequent subjects. Twenty-four (19%) manuscripts dealt with traumatic conditions. A particular interest in syndesmotic injuries was documented (12 studies; 60%). Conclusions: In this review, we documented an increasing interest in clinical applications of weightbearing CT in the orthopedic field between 2013 and 2023. The majority of the analyses focused on conditions related to the foot and the ankle; however, we found several works investigating the value of WBCT on other joints (in particular, the knee).
Collapse
Affiliation(s)
- Alessio Bernasconi
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Yanis Dechir
- Department of Orthopaedic and Trauma Surgery, Centre Hospitalier Universitaire (CHU) de Toulouse, 31300 Toulouse, France;
| | - Antonio Izzo
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Martina D’Agostino
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Paolo Magliulo
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Francesco Smeraglia
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | | | | | - François Lintz
- Department of Foot and Ankle Surgery, Ramsay Healthcare, Clinique de l’Union, 31240 Saint Jean, France;
| |
Collapse
|
6
|
Leão RV, Zelada SRB, Lobo CFT, da Silva AGM, Godoy-Santos AL, Gobbi RG, Helito PVP, Helito CP. Assessment of knee instability in ACL-injured knees using weight-bearing computed tomography (WBCT): a novel protocol and preliminary results. Skeletal Radiol 2024; 53:1611-1619. [PMID: 38185734 DOI: 10.1007/s00256-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To propose a protocol for assessing knee instability in ACL-injured knees using weight-bearing computed tomography (WBCT). MATERIALS AND METHODS We enrolled five patients with unilateral chronic ACL tears referred for WBCT. Bilateral images were obtained in four positions: bilateral knee extension, bilateral knee flexion, single-leg stance with knee flexion and external rotation, and single-leg stance with knee flexion and internal rotation. The radiation dose, time for protocol acquisition, and patients' tolerance of the procedure were recorded. A blinded senior radiologist assessed image quality and measured the anterior tibial translation (ATT) and femorotibial rotation (FTR) angle in the ACL-deficient and contralateral healthy knee. RESULTS All five patients were male, aged 23-30 years old. The protocol resulted in a 16.2 mGy radiation dose and a 15-min acquisition time. The procedure was well-tolerated, and patient positioning was uneventful, providing good-quality images. In all positions, the mean ATT and FTR were greater in ACL-deficient knees versus the healthy knee, with more pronounced differences observed in the bilateral knee flexion position. Mean lateral ATT in the flexion position was 9.1±2.8 cm in the ACL-injured knees versus 4.0±1.8 cm in non-injured knees, and mean FTR angle in the bilateral flexion position was 13.5°±7.7 and 8.6°±4.6 in the injured and non-injured knees, respectively. CONCLUSION Our protocol quantitatively assesses knee instability with WBCT, measuring ATT and FTR in diverse knee positions. It employs reasonable radiation, is fast, well-tolerated, and yields high-quality images. Preliminary findings suggest ACL-deficient knees show elevated ATT and FTR, particularly in the 30° flexion position.
Collapse
Affiliation(s)
- Renata Vidal Leão
- Hospital Sírio-Libanês, Institute of Radiology, R. Ovidio Pires de Campos, 65, São Paulo, 05403-911, Brazil.
| | - Sandro Ricardo Benites Zelada
- Knee Group, Institute of Orthopaedics and Traumatology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Riccardo Gomes Gobbi
- Knee Group, Institute of Orthopaedics and Traumatology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Camilo Partezani Helito
- Knee Group, Institute of Orthopaedics and Traumatology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Wang W, Jiang T, Zhang J, Liu J, Chan LC, Lin M, Li J, Ding C, Chiu KY, Fu H, Chan PK, Wen C. Subchondral bone expansion in advanced knee osteoarthritis: Relation with radiographic severity and role in surgical decision-making. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100461. [PMID: 38558888 PMCID: PMC10979271 DOI: 10.1016/j.ocarto.2024.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Joint space width (JSW) is a traditional imaging marker for knee osteoarthritis (OA) severity, but it lacks sensitivity in advanced cases. We propose tibial subchondral bone area (TSBA), a new CT imaging marker to explore its relationship with OA radiographic severity, and to test its performance for classifying surgical decisions between unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) compared to JSW. Methods We collected clinical, radiograph, and CT data from 182 patients who underwent primary knee arthroplasty (73 UKA, 109 TKA). The radiographic severity was scored using Kellgren-Lawrence (KL) grading system. TSBA and JSW were extracted from 3D CT-reconstruction model. We used independent t-test to investigate the relationship between TSBA and KL grade, and binary logistic regression to identify factors associated with TKA risk. The accuracy of TSBA, JSW and established classification model in differentiating between UKA and TKA was assessed using AUC. Results All parameters exhibited inter- and intra-class coefficients greater than 0.966. Patients with KL grade 4 had significantly larger TSBA than those with KL grade 3. TSBA (0.708 of AUC) was superior to minimal/average JSW (0.547/0.554 of AUC) associated with the risk of receiving TKA. Medial TSBA, together with gender and Knee Society Knee Score, emerged as independent classification factors in multivariate analysis. The overall AUC of composite model for surgical decision-making was 0.822. Conclusion Tibial subchondral bone area is an independent imaging marker for radiographic severity, and is superior to JSW for surgical decision-making between UKA and TKA in advanced OA patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianshu Jiang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun Liu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lok Chun Chan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Lin
- Department of Software Engineering, Faculty of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun, China
| | - Jia Li
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kwong Yuen Chiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Henry Fu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Ping Keung Chan
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
8
|
Rivas DJ, Aitken HD, Dibbern KN, Willey MC, Westermann RW, Goetz JE. Incorporating patient-specific hip orientation from weightbearing computed tomography affects discrete element analysis-computed regional joint contact mechanics in individuals treated with periacetabular osteotomy for hip dysplasia. Proc Inst Mech Eng H 2024; 238:237-249. [PMID: 38229467 PMCID: PMC10985972 DOI: 10.1177/09544119231221023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Computational models of the hip often omit patient-specific functional orientation when placing imaging-derived bony geometry into anatomic landmark-based coordinate systems for application of joint loading schemes. The purpose of this study was to determine if this omission meaningfully alters computed contact mechanics. Discrete element analysis models were created from non-weightbearing (NWB) clinical CT scans of 10 hip dysplasia patients (11 hips) and oriented in the International Society of Biomechanics (ISB) coordinate system (NWB-ISB). Three additional models were generated for each hip by adding patient-specific stance information obtained via weightbearing CT (WBCT) to each ISB-oriented model: (1) patient-specific sagittal tilt added (WBCT-sagittal), (2) coronal and axial rotation from optical motion capture added to (1; WBCT-combo), and (3) WBCT-derived axial, sagittal, and coronal rotation added to (1; WBCT-original). Identical gait cycle loading was applied to all models for a given hip, and computed contact stress and contact area were compared between model initialization techniques. Addition of sagittal tilt did not significantly change whole-joint peak (p = 0.922) or mean (p = 0.871) contact stress or contact area (p = 0.638). Inclusion of motion-captured coronal and axial rotation (WBCT-combo) decreased peak contact stress (p = 0.014) and slightly increased average contact area (p = 0.071) from WBCT-sagittal models. Including all WBCT-derived rotations (WBCT-original) further reduced computed peak contact stress (p = 0.001) and significantly increased contact area (p = 0.001). Variably significant differences (p = 0.001-1.0) in patient-specific acetabular subregion mechanics indicate the importance of functional orientation incorporation for modeling applications in which local contact mechanics are of interest.
Collapse
Affiliation(s)
- Dominic Jl Rivas
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Holly D Aitken
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Kevin N Dibbern
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Robert W Westermann
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Jessica E Goetz
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Kim KC, Wakeman B, Wissman R. Functional Imaging of the Knee-A Comprehensive Review. J Knee Surg 2023. [PMID: 37992754 DOI: 10.1055/a-2216-5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Knee pain is a common presenting problem in the general population. Radiographs and magnetic resonance imaging (MRI) are the cornerstones of imaging in current clinical practice. With advancements in technology, there has been increasing utilization of other modalities to evaluate knee disorders. Dynamic assessment utilizing computed tomography and portable ultrasounds have demonstrated the capacity to accurately assess and reproducibly quantify kinematics of knee disorders. Cartilage physiology can be evaluated with MRI. Emerging research has even demonstrated novel musculoskeletal applications of positron emission tomography to evaluate anterior cruciate ligament graft metabolic activity following reconstruction. As technology continues to evolve and traditional ways are improved upon, future comparative studies will elucidate the distinct advantages of the various modalities. Although radiology is still primarily an anatomic specialty, there is immense potential for functional imaging to be the standard of care. This review focuses on the most common musculoskeletal applications of functional imaging as well as future utilization.
Collapse
Affiliation(s)
- Kenneth C Kim
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Brooke Wakeman
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Rob Wissman
- Musculoskeletal Imaging Division, Department of Radiology, Faculty of Clinical Radiology, University of Missouri System, Columbia, Missouri
| |
Collapse
|
10
|
Fukuda T, Yonenaga T, Miyasaka T, Kimura T, Jinzaki M, Ojiri H. CT in osteoarthritis: its clinical role and recent advances. Skeletal Radiol 2023; 52:2199-2210. [PMID: 36287235 DOI: 10.1007/s00256-022-04217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 02/02/2023]
Abstract
Computed tomography (CT) is a widely available imaging method and considered as one of the most reliable techniques in bone assessment. Although CT has limited tissue contrast and needs radiation exposure, it has several advantages like fast scanning time and high spatial resolution. In this regard, CT has unique roles in osteoarthritis (OA) and its variable utilities have been reported. Hence, this review highlights the clinical role of CT in OA of representative joints. In addition, CT showed the several technical advancements recently, for example, acquiring the CT image with standing, obtaining the dual-energy data, and novel photon-counting detector development. Therefore, the recent studies and potential utility of these new CT systems in OA are also discussed.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan.
| | - Takenori Yonenaga
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Teruyuki Miyasaka
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Tadashi Kimura
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| |
Collapse
|
11
|
Atkins PR, Morris A, Elhabian SY, Anderson AE. A Correspondence-Based Network Approach for Groupwise Analysis of Patient-Specific Spatiotemporal Data. Ann Biomed Eng 2023; 51:2289-2300. [PMID: 37357248 PMCID: PMC11047278 DOI: 10.1007/s10439-023-03270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Methods for statistically analyzing patient-specific data that vary both spatially and over time are currently either limited to summary statistics or require elaborate surface registration. We propose a new method, called correspondence-based network analysis, which leverages particle-based shape modeling to establish correspondence across a population and preserve patient-specific measurements and predictions through statistical analysis. Herein, we evaluated this method using three published datasets of the hip describing cortical bone thickness of the proximal femur, cartilage contact stress, and dynamic joint space between control and patient cohorts to evaluate activity- and group-based differences, as applicable, using traditional statistical parametric mapping (SPM) and our proposed spatially considerate correspondence-based network analysis approach. The network approach was insensitive to correspondence density, while the traditional application of SPM showed decreasing area of the region of significance with increasing correspondence density. In comparison to SPM, the network approach identified broader and more connected regions of significance for all three datasets. The correspondence-based network analysis approach identified differences between groups and activities without loss of subject and spatial specificity which could improve clinical interpretation of results.
Collapse
Affiliation(s)
- Penny R Atkins
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Alan Morris
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Shireen Y Elhabian
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Andrew E Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Fritz J, Rashidi A, de Cesar Netto C. Magnetic Resonance Imaging of Total Ankle Arthroplasty: State-of-The-Art Assessment of Implant-Related Pain and Dysfunction. Foot Ankle Clin 2023; 28:463-492. [PMID: 37536814 DOI: 10.1016/j.fcl.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Total ankle arthroplasty (TAA) is an effective alternative for treating patients with end-stage ankle degeneration, improving mobility, and providing pain relief. Implant survivorship is constantly improving; however, complications occur. Many causes of pain and dysfunction after total ankle arthroplasty can be diagnosed accurately with clinical examination, laboratory, radiography, and computer tomography. However, when there are no or inconclusive imaging findings, magnetic resonance imaging (MRI) is highly accurate in identifying and characterizing bone resorption, osteolysis, infection, osseous stress reactions, nondisplaced fractures, polyethylene damage, nerve injuries and neuropathies, as well as tendon and ligament tears. Multiple vendors offer effective, clinically available MRI techniques for metal artifact reduction MRI of total ankle arthroplasty. This article reviews the MRI appearances of common TAA implant systems, clinically available techniques and protocols for metal artifact reduction MRI of TAA implants, and the MRI appearances of a broad spectrum of TAA-related complications.
Collapse
Affiliation(s)
- Jan Fritz
- Department of Orthopedic Surgery, Division of Foot and Ankle Surgery, Duke University, Durham, NC, USA.
| | - Ali Rashidi
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY 10016, USA
| | - Cesar de Cesar Netto
- Department of Radiology, Molecular Imaging Program at StanDepartment of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Park EH, Fritz J. The role of imaging in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101866. [PMID: 37659890 DOI: 10.1016/j.berh.2023.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Osteoarthritis is a complex whole-organ disorder that involves molecular, anatomic, and physiologic derangement. Advances in imaging techniques have expanded the role of imaging in evaluating osteoarthritis and functional changes. Radiography, magnetic resonance imaging, computed tomography (CT), and ultrasonography are commonly used imaging modalities, each with advantages and limitations in evaluating osteoarthritis. Radiography comprehensively analyses alignment and osseous features, while MRI provides detailed information about cartilage damage, bone marrow edema, synovitis, and soft tissue abnormalities. Compositional imaging derives quantitative data for detecting cartilage and tendon degeneration before structural damage occurs. Ultrasonography permits real-time scanning and dynamic joint evaluation, whereas CT is useful for assessing final osseous detail. Imaging plays an essential role in the diagnosis, management, and research of osteoarthritis. The use of imaging can help differentiate osteoarthritis from other diseases with similar symptoms, and recent advances in deep learning have made the acquisition, management, and interpretation of imaging data more efficient and accurate. Imaging is useful in monitoring and predicting the prognosis of osteoarthritis, expanding our understanding of its pathophysiology. Ultimately, this enables early detection and personalized medicine for patients with osteoarthritis. This article reviews the current state of imaging in osteoarthritis, focusing on the strengths and limitations of various imaging modalities, and introduces advanced techniques, including deep learning, applied in clinical practice.
Collapse
Affiliation(s)
- Eun Hae Park
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jan Fritz
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
14
|
Dunning H, van de Groes SAW, Buckens CF, Prokop M, Verdonschot N, Janssen D. Fully automatic extraction of knee kinematics from dynamic CT imaging; normative tibiofemoral and patellofemoral kinematics of 100 healthy volunteers. Knee 2023; 41:9-17. [PMID: 36608361 DOI: 10.1016/j.knee.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/23/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Accurate assessment of knee kinematics is important in the diagnosis and quantification of knee disorders and to determine the effect of orthopaedic interventions. Despite previous studies showing the usefulness of dynamic imaging and providing valuable insights in knee kinematics, dynamic imaging is not widely used in clinics due to a variety of causes. In this study normative knee kinematics of 100 healthy subjects is established using a fully automatic workflow feasible for use in the clinic. METHODS One-hundred volunteers were recruited and a dynamic CT scan was made during a flexion extension movement. Image data was automatically segmented and dynamic and static images were superimposed using image registration. Coordinate systems for the femur, patella and tibia were automatically calculated as well as their dynamic position and orientation. RESULTS Dynamic CT scans weremade withan effective radiation dose of 0.08 mSv. The median tibial internal rotation was 4° and valgus rotation is 5° at full flexion. Femoral rollback of the lateral condyle was 7 mm versus 2 mm of the medial condyle. The median patella flexion reached 65% of tibiofemoral flexion and the median tilt and rotation were 5° and 0° at full flexion, respectively. The median mediolateral translation of the patella was 3 mm (medially) in the first 30° of flexion. CONCLUSION The current study presents TF and PF kinematic data of 97 healthy individuals, providing a unique dataset of normative knee kinematics. The short scanning time, simple motion and, automatic analysis make the methods presented suitable for daily clinical practice.
Collapse
Affiliation(s)
- Hans Dunning
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - S A W van de Groes
- Department of Orthopaedics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C F Buckens
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathias Prokop
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nico Verdonschot
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; University of Twente, Laboratory for Biomechanical Engineering, Faculty of Engineering Technology, Enschede, the Netherlands
| | - Dennis Janssen
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Li X, Gu X, Jiang Z, Duan H, Zhou J, Chang Y, Lu K, Chen B. Statistical modeling: Assessing the anatomic variability of knee joint space width. J Biomech 2023; 147:111420. [PMID: 36652892 DOI: 10.1016/j.jbiomech.2022.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Population-based knee joint space width (JSW) assessments are promising for the prevention and early diagnosis of osteoarthritis. This study aimed to establish the statistical shape and alignment model (SSAM) of knee joints for assessing anatomic variation in knee JSW in the healthy Chinese male population. CT scans of asymptomatic knee joints of healthy male participants (n = 107) were collected for manual segmentation to create mesh samples. The as-scanned positional error was reduced by a standard processing flow of deformable mesh registration. Principal component analysis (PCA) was performed to create a tibiofemoral SSAM that was trained on all mesh samples. The anatomic variability of the JSW in the healthy Chinese male population was then assessed using the SSAM with regression analysis and 3D analysis by color-coded mapping. Almost all PCA modes had a linear influence on the anatomic variation of the medial and lateral JSW. The JSW variability within the SSAM was mainly explained by mode 1 (45.1 % of variation), demonstrating that this mode had the greatest influence on JSW variation. 3D assessment of the JSW showed that the minimum medial JSW varied from 2.76 to 3.23 mm, and its site shifted a short distance on the medial tibial plateau. The root-mean-square fitting and generalization errors of the SSAM were below 1 mm. This study will benefit the design and optimization of prosthetic devices, and may be applicable to the prevention and early diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Xiaohu Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xuelian Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ziang Jiang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Huabing Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jincheng Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yihao Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Jiangsu 215300, China.
| | - Bo Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| |
Collapse
|
16
|
Hayashi D, Roemer FW, Link T, Li X, Kogan F, Segal NA, Omoumi P, Guermazi A. Latest advancements in imaging techniques in OA. Ther Adv Musculoskelet Dis 2022; 14:1759720X221146621. [PMID: 36601087 PMCID: PMC9806406 DOI: 10.1177/1759720x221146621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
The osteoarthritis (OA) research community has been advocating a shift from radiography-based screening criteria and outcome measures in OA clinical trials to a magnetic resonance imaging (MRI)-based definition of eligibility and endpoint. For conventional morphological MRI, various semiquantitative evaluation tools are available. We have lately witnessed a remarkable technological advance in MRI techniques, including compositional/physiologic imaging and automated quantitative analyses of articular and periarticular structures. More recently, additional technologies were introduced, including positron emission tomography (PET)-MRI, weight-bearing computed tomography (CT), photon-counting spectral CT, shear wave elastography, contrast-enhanced ultrasound, multiscale X-ray phase contrast imaging, and spectroscopic photoacoustic imaging of cartilage. On top of these, we now live in an era in which artificial intelligence is increasingly utilized in medicine. Osteoarthritis imaging is no exception. Successful implementation of artificial intelligence (AI) will hopefully improve the workflow of radiologists, as well as the level of precision and reproducibility in the interpretation of images.
Collapse
Affiliation(s)
- Daichi Hayashi
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Frank W. Roemer
- Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
- Department of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Link
- Department of Radiology, University of California San Francisco, San Franciso, CA, USA
| | - Xiaojuan Li
- Department of Radiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Neil A. Segal
- Department of Rehabilitation Medicine, The University of Kansas, Kansas City, KS, USA
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ali Guermazi
- Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02132, USA
- Department of Radiology, VA Boston Healthcare System, U.S. Department of Veterans Affairs, West Roxbury, MA 02132, USA
| |
Collapse
|