1
|
Xu T, Zhang K, Hu Y, Yang R, Tang J, Fu W. Comparison of the Therapeutic Efficacy and Autophagy-Mediated Mechanisms of Action of Urine-Derived and Adipose-Derived Stem Cells in Osteoarthritis. Am J Sports Med 2024; 52:3130-3146. [PMID: 39311500 DOI: 10.1177/03635465241277176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and disabling disease that affects a significant proportion of the global population. Urine-derived stem cells (USCs) have shown great prospects in the treatment of OA, but there is no study that has compared them with traditional stem cells. PURPOSE This study aimed to compare the therapeutic efficacy and mechanisms of USCs and adipose-derived stem cells (ADSCs) for OA treatment. STUDY DESIGN Controlled laboratory study. METHODS We compared the biological properties of USCs and ADSCs using CCK-8, colony formation, EdU, adhesion, and apoptosis assays. We evaluated the protective effects of USCs and ADSCs on IL-1β-treated OA chondrocytes by chemical staining, immunofluorescence, and Western blotting. We assessed the effects of USCs and ADSCs on chondrocyte autophagy by transmission electron microscopy, immunofluorescence, and Western blotting. We also compared the therapeutic efficacy of intra-articular injections of USCs and ADSCs by gross, histological, micro-computed tomography, and immunohistochemical analyses in an OA rat model induced by anterior cruciate ligament transection. RESULTS USCs showed higher proliferation, colony formation, DNA synthesis, adhesion, and anti-apoptotic abilities than ADSCs. Both USCs and ADSCs increased the expression of cartilage-specific proteins and decreased the expression of matrix degradation-related proteins and inflammatory factors in OA chondrocytes. USCs had a greater advantage in suppressing MMP-13 and inflammatory factors than ADSCs. Both USCs and ADSCs enhanced autophagy in OA chondrocytes, with USCs being more effective than ADSCs. The autophagy inhibitor 3-MA reduced the enhanced autophagy and protective effects of USCs and ADSCs on OA chondrocytes. CONCLUSION To our knowledge, this is the first study to explore the efficacy of USCs in the treatment of knee OA and to compare them with ADSCs. Considering the superior properties of USCs in terms of noninvasive acquisition, a high cost-benefit ratio, and low ethical concerns, our study suggests that they may be a more promising therapeutic option than ADSCs for OA treatment under rigorous regulatory pathways. CLINICAL RELEVANCE USCs may be a superior cell source for stem cells to treat knee OA, and this study strengthens the evidence for the application of USCs.
Collapse
Affiliation(s)
- Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunan Hu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Runze Yang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiexi Tang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Roelofs AJ, De Bari C. Osteoarthritis year in review 2023: Biology. Osteoarthritis Cartilage 2024; 32:148-158. [PMID: 37944663 DOI: 10.1016/j.joca.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Great progress continues to be made in our understanding of the multiple facets of osteoarthritis (OA) biology. Here, we review the major advances in this field and progress towards therapy development over the past year, highlighting a selection of relevant published literature from a PubMed search covering the year from the end of April 2022 to the end of April 2023. The selected articles have been arranged in themes. These include 1) molecular regulation of articular cartilage and implications for OA, 2) mechanisms of subchondral bone remodelling, 3) role of synovium and inflammation, 4) role of age-related changes including cartilage matrix stiffening, cellular senescence, mitochondrial dysfunction, metabolic dysfunction, and impaired autophagy, and 5) peripheral mechanisms of OA pain. Progress in the understanding of the cellular and molecular mechanisms responsible for the multiple aspects of OA biology is unravelling novel therapeutic targets for disease modification.
Collapse
Affiliation(s)
- Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Idoko-Akoh A, Goldhill DH, Sheppard CM, Bialy D, Quantrill JL, Sukhova K, Brown JC, Richardson S, Campbell C, Taylor L, Sherman A, Nazki S, Long JS, Skinner MA, Shelton H, Sang HM, Barclay WS, McGrew MJ. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family. Nat Commun 2023; 14:6136. [PMID: 37816720 PMCID: PMC10564915 DOI: 10.1038/s41467-023-41476-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Chickens genetically resistant to avian influenza could prevent future outbreaks. In chickens, influenza A virus (IAV) relies on host protein ANP32A. Here we use CRISPR/Cas9 to generate homozygous gene edited (GE) chickens containing two ANP32A amino acid substitutions that prevent viral polymerase interaction. After IAV challenge, 9/10 edited chickens remain uninfected. Challenge with a higher dose, however, led to breakthrough infections. Breakthrough IAV virus contained IAV polymerase gene mutations that conferred adaptation to the edited chicken ANP32A. Unexpectedly, this virus also replicated in chicken embryos edited to remove the entire ANP32A gene and instead co-opted alternative ANP32 protein family members, chicken ANP32B and ANP32E. Additional genome editing for removal of ANP32B and ANP32E eliminated all viral growth in chicken cells. Our data illustrate a first proof of concept step to generate IAV-resistant chickens and show that multiple genetic modifications will be required to curtail viral escape.
Collapse
Affiliation(s)
- Alewo Idoko-Akoh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Royal Veterinary College, London, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Ciara Campbell
- Department of Infectious Disease, Imperial College London, London, UK
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | | | - Jason S Long
- Department of Infectious Disease, Imperial College London, London, UK
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Michael A Skinner
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Helen M Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
5
|
Liu W, Yuan Q, Cao S, Wang G, Liu X, Xia Y, Bian Y, Xu F, Chen Y. Review: Acetylation Mechanisms andTargeted Therapies in Cardiac Fibrosis. Pharmacol Res 2023; 193:106815. [PMID: 37290541 DOI: 10.1016/j.phrs.2023.106815] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Cardiac fibrosis is a common pathophysiological remodeling process that occurs in a variety of cardiovascular diseases and greatly influences heart structure and function, progressively leading to the development of heart failure. However, to date, few effective therapies for cardiac fibrosis exist. Abnormal proliferation, differentiation, and migration of cardiac fibroblasts are responsible for the excessive deposition of extracellular matrix in the myocardium. Acetylation, a widespread and reversible protein post-translational modification, plays an important role in the development of cardiac fibrosis by adding acetyl groups to lysine residues. Many acetyltransferases and deacetylases regulate the dynamic alterations of acetylation in cardiac fibrosis, regulating a range of pathogenic conditions including oxidative stress, mitochondrial dysfunction, and energy metabolism disturbance. In this review, we demonstrate the critical roles that acetylation modifications caused by different types of pathological injury play in cardiac fibrosis. Furthermore, we propose therapeutic acetylation-targeting strategies for the prevention and treatment of patients with cardiac fibrosis.
Collapse
Affiliation(s)
- Weikang Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Guoying Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangguo Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Xia
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Quintiens J, De Roover A, Cornelis FMF, Escribano-Núñez A, Sermon A, Pazmino S, Monteagudo S, Lories RJ. Hypoxia and Wnt signaling inversely regulate expression of chondroprotective molecule ANP32A in articular cartilage. Osteoarthritis Cartilage 2023; 31:507-518. [PMID: 36370958 DOI: 10.1016/j.joca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage. METHODS A bioinformatics pipeline was applied to identify regulators of ANP32A. Pathways of interest were targeted to study their impact on ANP32A in in vitro cultures of the human chondrocyte C28/I2 cell-line and primary human articular chondrocytes (hACs) from up to five different donors, using Wnt-activator CHIR99021, hypoxia-mimetic IOX2 and a hypoxia chamber. ANP32A was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, the effect of hypoxia was examined by immunohistochemistry in mice injected intra-articularly with IOX2 after destabilization of the medial meniscus. Effects of Wnt hyper-activation were investigated using Frzb-knockout mice and wild-type mice treated intra-articularly with CHIR99021. Wnt inhibition effects were assessed upon intra-articular injection of XAV939. RESULTS The hypoxia and Wnt signaling pathways were identified as networks controlling ANP32A expression. In vitro and in vivo experiments demonstrated increases in ANP32A upon hypoxic conditions (1.3-fold in hypoxia in C28/I2 cells with 95% confidence interval (CI) [1.11-1.54] and 1.90-fold in hACs [95% CI: 1.56-2] and 1.67-fold in ANP32A protein levels after DMM surgery with IOX2 injections [95% CI: 1.33-2.08]). Wnt hyper-activation decreased ANP32A in chondrocytes in vitro (1.23-fold decrease [95% CI: 1.02-1.49]) and in mice (1.45-fold decrease after CHIR99021 injection [95% CI: 1.22-1.72] and 1.41-fold decrease in Frzb-knockout mice [95% CI: 1.00-1.96]). Hypoxia and Wnt modulated ataxia-telangiectasia mutated serine/threonine kinase (ATM), an ANP32A target gene, in hACs (1.89-fold increase [95% CI: 1.38-2.60] and 1.41-fold decrease [95% CI: 1.02-1.96]). CONCLUSIONS Maintaining hypoxia and limiting Wnt activation sustain ANP32A and protect against osteoarthritis.
Collapse
Affiliation(s)
- J Quintiens
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - A De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - F M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Sermon
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Trauma Research and Innovation Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Pazmino
- Clinical Research Unit, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Jahr H, Wang FS. Inhibition of histone lysine demethylase 6A promotes chondrocytic activity and attenuates osteoarthritis development through repressing H3K27me3 enhancement of Wnt10a. Int J Biochem Cell Biol 2023; 158:106394. [PMID: 36871937 DOI: 10.1016/j.biocel.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Germany; Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Xiang Q, Xie Q, Liu Z, Mu G, Zhang H, Zhou S, Wang Z, Wang Z, Zhang Y, Zhao Z, Yuan D, Guo L, Wang N, Xiang J, Song H, Sun J, Jiang J, Cui Y. Genetic variations in relation to bleeding and pharmacodynamics of dabigatran in Chinese patients with nonvalvular atrial fibrillation: A nationwide multicentre prospective cohort study. Clin Transl Med 2022; 12:e1104. [PMID: 36453946 PMCID: PMC9714378 DOI: 10.1002/ctm2.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION To identify the potential factors responsible for the individual variability of dabigatran, we investigated the genetic variations associated with clinical outcomes and pharmacodynamics (PD) in Chinese patients with nonvalvular atrial fibrillation (NVAF). MATERIALS AND METHODS Chinese patients with NVAF taking dabigatran etexilate with therapeutic doses were enrolled. The primary (bleeding events) and secondary (thromboembolic and major adverse cardiac events) outcomes for a 2-year follow-up were evaluated. Peak and trough PD parameters (anti-FIIa activity, activated partial thromboplastin time and prothrombin time) were detected. Whole-exome sequencing, genome-wide sequencing and candidate gene association analyses were performed. RESULTS There were 170 patients with NVAF treated with dabigatran (110 mg twice daily) who were finally included. Two single-nucleotide polymorphisms (SNPs) were significantly related with bleeding, which include UBASH3B rs2276408 (odds ratio [OR] = 8.79, 95% confidence interval [CI]: 2.99-25.83, p = 7.77 × 10-5 at sixth month visit) and FBN2 rs3805625 (OR = 8.29, 95% CI: 2.87-23.89, p = 9.08 × 10-5 at 12th month visit), as well as with increased trends at other visits (p < .05). Furthermore, minor allele carriers of 16 new SNPs increased PD levels, and those of one new SNP decreased PD values (p < 1.0 × 10-5 ). Lastly, 33 new SNPs were found to be associated with bleeding and PD among 14 candidate genes. Unfortunately, the low number of secondary outcomes precluded further association analyses. CONCLUSIONS Genetic variations indeed affected bleeding and PD in Chinese patients with NVAF treated with dabigatran. The functions of these suggestive genes and SNPs might further be explored and verified in more in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Qian Xiang
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Qiufen Xie
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Zhiyan Liu
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Guangyan Mu
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Hanxu Zhang
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Shuang Zhou
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Zhe Wang
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Zining Wang
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Yatong Zhang
- Department of PharmacyBeijing HospitalBeijingChina
| | - Zinan Zhao
- Department of PharmacyBeijing HospitalBeijingChina
| | - Dongdong Yuan
- Department of PharmacyZhengzhou Seventh People's HospitalZhengzhouChina
| | - Liping Guo
- Department of PharmacyZhengzhou Seventh People's HospitalZhengzhouChina
| | - Na Wang
- Department of PharmacyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Xiang
- Department of PharmacyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hongtao Song
- Department of Pharmacy900 Hospital of the Joint Logistics TeamFuzhouChina
| | - Jianjun Sun
- Department of PharmacyThe Affiliated Hospital of Inner Mongolia Medical UniversityHuhehaoteChina
| | - Jie Jiang
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Yimin Cui
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
- Institute of Clinical PharmacologyPeking UniversityBeijingChina
| |
Collapse
|
9
|
Xu J, Ma J, Zeng Y, Si H, Wu Y, Zhang S, Shen B. A Cross-Tissue Transcriptome-Wide Association Study Identifies Novel Susceptibility Genes for Juvenile Idiopathic Arthritis in Asia and Europe. Front Immunol 2022; 13:941398. [PMID: 35967305 PMCID: PMC9367689 DOI: 10.3389/fimmu.2022.941398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children, and its pathogenesis is still unclear. Genome-wide association studies (GWASs) of JIA have identified hundreds of risk factors, but few of them implicated specific biological mechanisms. Methods A cross-tissue transcriptome-wide association study (TWAS) was performed with the functional summary-based imputation software (FUSION) tool based on GWAS summary datasets (898 JIA patients and 346,102 controls from BioBank Japan (BBJ)/FinnGen). The gene expression reference weights of skeletal muscle and the whole blood were obtained from the Genotype-Tissue Expression (GTExv8) project. JIA-related genes identified by TWAS findings genes were further compared with the differentially expressed genes (DEGs) identified by the mRNA expression profile of JIA from the Gene Expression Omnibus (GEO) database (accession number: GSE1402). Last, candidate genes were analyzed using functional enrichment and annotation analysis by Metascape to examine JIA-related gene sets. Results The TWAS identified 535 significant genes with P < 0.05 and contains 350 for Asian and 195 for European (including 10 genes both expressed in Asian and European), such as CDC16 (P = 1.72E-03) and PSMD5-AS1 (P = 3.65E-02). Eight overlapping genes were identified based on TWAS results and DEGs of JIA patients, such as SIRPB1 (PTWAS = 4.21E-03, PDEG = 1.50E-04) and FRAT2 (PTWAS = 2.82E-02, PDEG = 1.43E-02). Pathway enrichment analysis of TWAS identified 183 pathways such as cytokine signaling in the immune system and cell adhesion molecules. By integrating the results of DEGs pathway and process enrichment analyses, 19 terms were identified such as positive regulation of T-cell activation. Conclusion By conducting two populations TWAS, we identified a group of JIA-associated genes and pathways, which may provide novel clues to uncover the pathogenesis of JIA.
Collapse
|