1
|
Xu Z, Liu J, Hu H, Ma J, Yang H, Chen J, Xu H, Hu H, Luo H, Chen G. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy. Front Bioeng Biotechnol 2025; 13:1539566. [PMID: 40035023 PMCID: PMC11872905 DOI: 10.3389/fbioe.2025.1539566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Osteoarthritis is one of the most common degenerative joint diseases, which seriously affects the life of middle-aged and elderly people. Traditional treatments such as surgical treatment and systemic medication, often do not achieve the expected or optimal results, which leads to severe trauma and a variety of side effects. Therefore, there is an urgent need to develop novel therapeutic options to overcome these problems. Hydrogels are widely used in biomedical tissue repairing as a platform for loading drugs, proteins and stem cells. In recent years, smart-responsive hydrogels have achieved excellent results as novel drug delivery systems in the treatment of osteoarthritis. This review focuses on the recent advances of endogenous stimuli (including enzymes, pH, reactive oxygen species and temperature, etc.) responsive hydrogels and exogenous stimuli (including light, shear, ultrasound and magnetism, etc.) responsive hydrogels in osteoarthritis treatment. Finally, the current limitations of application and future prospects of smart responsive hydrogels are summarized.
Collapse
Affiliation(s)
- Zhuoming Xu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jintao Liu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hanyin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Ma
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyang Yang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haodong Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Baran K, Czechowska A, Kopacz K, Padula G, Migdalska-Sęk M, Tomaszewski W, Nowak K, Domżalski M, Brzeziańska-Lasota E. MMP13 mRNA Expression Level as a Potential Marker for Knee OA Progression-An Observational Study. J Clin Med 2025; 14:1263. [PMID: 40004793 PMCID: PMC11856394 DOI: 10.3390/jcm14041263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Osteoarthritis (OA) is a very common degenerative joint disease that has a significant negative impact on patients' lives and which can lead to functional limitations and disability. Matrix metalloproteinase 13 (MMP-13) is a key enzyme responsible for the degenerative changes in cartilage occurring during the pathogenesis of OA. This cohort study analyzed the differences in the expression level of MMP13 mRNA in articular cartilage with subchondral bone and in the synovium of patients with OA, according to the disease stage, in order to develop potential markers for OA progression, as well as for the degree of pain perception, in order to discover a molecular biomarker related to pain. Methods: In thirty-one patients (n = 31), the expression level of the studied gene was assessed in the affected and unaffected areas of the knee joint using the qPCR method. Statistical analysis was performed using the Mann-Whitney U test, the Kruskal-Wallis test, and Spearman's rank correlation coefficient. Results: A significantly higher expression level of MMP13 mRNA was noticed in the OA-affected articular cartilage with subchondral bone compared to the control tissue (p = 0.027, Mann-Whitney U test). The expression level of MMP13 mRNA was higher in patients with stage 4 knee OA than in those with stage 3, but the difference in MMP13 mRNA expression level was statistically insignificant (p > 0.05, Mann-Whitney U test). A higher MMP13 mRNA expression level was noticed in the OA-affected synovium compared to the control tissue (median RQ: 0.068 and 0.037, respectively), but these differences were not significant (p > 0.05, Mann-Whitney U test). A significantly higher MMP13 mRNA expression level was observed in the synovium of stage 4 knee OA patients compared to stage 3 patients (p = 0.015, Mann-Whitney U test). There was no significant difference in the expression level of MMP13 mRNA between both tissues, i.e., the articular cartilage with subchondral bone and the synovium from the stage 3 group and the control tissue (p > 0.05, Mann-Whitney U test); however, a significant difference was found between these tissues in stage 4 and in the control tissue (p = 0.014, Mann-Whitney U test). Conclusions: The results of our pilot study indicated the diagnostic potential of MMP13 mRNA and proved its role in the development and progression of OA. Further studies are needed to verify the potential utility of MMP13 mRNA in the development of molecularly targeted therapy for patients with OA.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Aleksandra Czechowska
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Karolina Kopacz
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Wiesław Tomaszewski
- Foundation for Medical Education, Health Promotion, Art and Culture ARS MEDICA, 03-721 Warsaw, Poland;
| | - Krzysztof Nowak
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| | - Marcin Domżalski
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| |
Collapse
|
3
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
4
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
5
|
Bahari Golamkaboudi A, Vojoudi E, Babaeian Roshani K, Porouhan P, Houshangi D, Barabadi Z. Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis. Stem Cell Rev Rep 2024; 20:2104-2123. [PMID: 39145857 DOI: 10.1007/s12015-024-10768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.
Collapse
Affiliation(s)
- Ali Bahari Golamkaboudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pejman Porouhan
- Department of Radiation Oncology, Vasee Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - David Houshangi
- Department of Biomedical Engineering, University of Houston, Houston, United States
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Pozzuoli A, Belluzzi E, Ruggieri P. Editorial: New trends in osteoarthritis treatment. Front Med (Lausanne) 2024; 11:1372052. [PMID: 38357648 PMCID: PMC10864629 DOI: 10.3389/fmed.2024.1372052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|