1
|
Avanti M, Martin A, Columbres RC, Mozaffar T, Kimonis V. Effects of enzyme replacement therapy on bone density in late onset Pompe disease. Mol Genet Metab 2023; 140:107644. [PMID: 37515933 DOI: 10.1016/j.ymgme.2023.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of α-glucosidase, resulting in the accumulation of glycogen in smooth, cardiac, and skeletal muscles, leading to skeletal muscle dysfunction, proximal muscle weakness, and early respiratory insufficiency. Although many patients exhibit decreased bone mineral density (BMD) and increased fractures, there is currently no official protocol for surveillance and management of osteoporosis and osteopenia in late onset Pompe disease (LOPD). Enzyme replacement therapy (ERT) has therapeutic effects on muscle function; however, very few studies report on the effect of ERT on bone mineralization in LOPD patients. Our study included 15 Pompe patients from 25 to 76 years of age on ERT for variable durations. Progressive impact of ERT on BMD of the hips and spine, and the frequency of osteopenia or osteoporosis was studied using DEXA scanning, and correlations were made with age of initiation of ERT, duration of ERT and six-minute walk test. We found a significant positive correlation between the age of ERT initiation and age of the subject, with increases in the Z-scores for the femur and lumbar region. Females had a significantly higher risk for developing osteoporosis compared to males. These results highlight the significance of ERT on reducing progression of osteoporosis in LOPD patients.
Collapse
Affiliation(s)
- Mahima Avanti
- Division of Genetics, Department of Pediatrics, University of California - Irvine, Orange, CA 92697, United States of America
| | - Angela Martin
- Division of Genetics, Department of Pediatrics, University of California - Irvine, Orange, CA 92697, United States of America
| | - Rod Carlo Columbres
- Division of Genetics, Department of Pediatrics, University of California - Irvine, Orange, CA 92697, United States of America
| | - Tahseen Mozaffar
- Division of Neuromuscular Diseases, Department of Neurology, University of California- Irvine, 200 S. Manchester Ave., Suite 206, Orange, CA, United States of America
| | - Virginia Kimonis
- Division of Genetics, Department of Pediatrics, University of California - Irvine, Orange, CA 92697, United States of America; Division of Neuromuscular Diseases, Department of Neurology, University of California- Irvine, 200 S. Manchester Ave., Suite 206, Orange, CA, United States of America; Department of Pathology, University of California - Irvine, Orange, CA 92697, United States of America.
| |
Collapse
|
2
|
Jain M, Naik S, Mishra NP, Tripathy SK, Neha A, Sahu DP, KP L. Correlation of bone mineral density using the dual energy x-ray absorptiometry and the magnetic resonance imaging of the lumbar spine in Indian patients. J Orthop 2023; 40:65-69. [PMID: 37188144 PMCID: PMC10172620 DOI: 10.1016/j.jor.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Background Dual-energy x-ray absorptiometry (DEXA) scan is extensively used to diagnose osteoporosis. But surprisingly, osteoporosis remains an underdiagnosed condition with many fragility fracture patients who have failed to undergo DEXA or received concomitant treatment for osteoporosis. Magnetic resonance imaging (MRI) of the lumbar spine is a routine radiological investigation bring done for low back pain. MRI can detect changes in the bone marrow signal intensity on the standard T1-weighted images. This correlation can be explored to measure osteoporosis in elderly and post-menopausal patients. The present study aims to find any correlation of bone mineral density using the DEXA and MRI of the lumbar spine in Indian patients. Methods Five regions of interest (ROI) of size 130-180 mm2 were placed in the vertebral body in the mid-sagittal section and parasagittal sections on either side (four in L1-L4 and one outside body) of elderly patients who underwent MRI for back pain. They also underwent a DEXA scan for osteoporosis. Signal to Noise Ratio (SNR) was calculated by dividing the mean signal intensity obtained for each vertebra by the standard deviation of the noise. Similarly, SNR was measured for 24 controls. An MRI-based "M score" was calculated by getting the difference in SNR patients to SNR controls and then dividing it by the control's standard deviation (SD). Correlation between the T score on DEXA and M scores on MRI was found out. Results With the M score greater than or equal to 2.82, the sensitivity was 87.5%, and the specificity was 76.5%. M scores negatively correlated with the T score. With the increase in the T score, the M score decreased. The Spearman correlation coefficient for the spine T score was -0.651, with a p-value of <0.001, and the hip T score was -0.428, with a p-value of 0.013. Conclusion Our study indicates that MRI investigations are helpful in Osteoporosis assessments. Even though MRI may not replace DEXA, it can give insight into elderly patients who get an MRI routinely for back pain. It may also have a prognostic value.
Collapse
Affiliation(s)
- Mantu Jain
- Department of Orthopedics, AIIMS Bhubaneswar, Odisha, 751019, India
| | - Suprava Naik
- Department of Radiodiagnosis, AIIMS Bhubaneswar, Odisha, 751019, India
| | | | | | - Aishwarya Neha
- Department of Radiodiagnosis, AIIMS Bhubaneswar, Odisha, 751019, India
| | - Dinesh Prasad Sahu
- Department of Community Medicine and Family Medicine, AIIMS Bhubaneswar, Odisha, 751019, India
| | - Lubaib KP
- Department of Orthopedics, AIIMS Bhubaneswar, Odisha, 751019, India
| |
Collapse
|
3
|
Li Y, Samant P, Cochran C, zhao Y, Keyak JH, Hu X, Yu A, Xiang L. The feasibility study of XACT imaging for characterizing osteoporosis. Med Phys 2022; 49:7694-7702. [PMID: 35962866 PMCID: PMC10567061 DOI: 10.1002/mp.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture, which might be related to age and space travel. An unmet need exists for the development of novel imaging technologies to characterize osteoporosis. PURPOSE The purpose of our study is to investigate the feasibility of X-ray-induced acoustic computed tomography (XACT) imaging for osteoporosis detection. METHODS An in-house simulation workflow was developed to assess the ability of XACT for osteoporosis detection. To evaluate this simulation workflow, a three-dimensional digital bone phantom for XACT imaging was created by a series of two-dimensional micro-computed tomography (micro-CT) slices of normal and osteoporotic bones in mice. In XACT imaging, the initial acoustic pressure rise caused by the X-ray induce acoustic (XA) effect is proportional to bone density. First, region growing was deployed for image segmentation of different materials inside the bone. Then k-wave simulations were deployed to model XA wave propagation, attenuation, and detection. Finally, the time-varying pressure signals detected at each transducer location were used to reconstruct the XACT image with a time-reversal reconstruction algorithm. RESULTS Through the simulated XACT images, cortical porosity has been calculated, and XA signal spectra slopes have been analyzed for the detection of osteoporosis. The results have demonstrated that osteoporotic bones have lower bone mineral density and higher spectra slopes. These findings from XACT images were in good agreement with porosity calculation from micro-CT images. CONCLUSION This work explores the feasibility of using XACT imaging as a new imaging tool for Osteoporosis detection. Considering that acoustic signals are generated by X-ray absorption, XACT imaging can be combined with traditional X-ray imaging that holds potential for clinical management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Pratik Samant
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Oncology, University of Oxford, Oxford, UK
| | - Christian Cochran
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Yue zhao
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Joyce H. Keyak
- Department of Radiological Sciences, University of California, Irvine, Irvine, California, USA
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liangzhong Xiang
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Radiological Sciences, University of California, Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Collins CJ, Atkins PR, Ohs N, Blauth M, Lippuner K, Müller R. Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation. Sci Rep 2022; 12:17960. [PMID: 36289391 PMCID: PMC9606273 DOI: 10.1038/s41598-022-22678-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures.
Collapse
Affiliation(s)
- Caitlyn J. Collins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.438526.e0000 0001 0694 4940Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA USA
| | - Penny R. Atkins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.223827.e0000 0001 2193 0096Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Nicholas Ohs
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Michael Blauth
- grid.5361.10000 0000 8853 2677Department of Orthopedics and Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria ,Clinical Medical Department DePuy Synthes, Zuchwil, Switzerland
| | - Kurt Lippuner
- grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph Müller
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Osteosarcopenia—The Role of Dual-Energy X-ray Absorptiometry (DXA) in Diagnostics. J Clin Med 2022; 11:jcm11092522. [PMID: 35566648 PMCID: PMC9100050 DOI: 10.3390/jcm11092522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis and sarcopenia lead to increased mortality, but their early diagnosis allows preventive measures and treatment to be implemented. The dual-energy X-ray absorptiometry (DXA) method enables the assessment of both bone mineral density (BMD) and bone quality based on the trabecular bone score (TBS), the Bone Strain Index (BSI), hip structure analysis (HSA), and comprehensive hip axis length (HAL). The main complications of osteoporosis are fractures, and a BMD value or T-score together with TBS can be also applied in fracture risk calculation using the Fracture Risk Assessment Tool (FRAX). In recent years, the interest in sarcopenia has increased. There are many methods for assessing the quality, quantity and function of muscles. Total body DXA provides information not only about the BMD of the whole skeleton or the amount of lean tissue (identified as fat-free mass), but also about the amount and distribution of adipose tissue. Some parameters obtained from DXA measurements related to muscle and/or fat mass are used in the assessment of osteosarcopenia. The following article presents a wide range of possibilities for the use of the DXA method in the diagnosis of osteosarcopenia because DXA is a useful technique for the diagnosis of bone density and body composition together.
Collapse
|
6
|
Liu J, Liao JW, Li W, Chen XJ, Feng JX, Yao L, Huang PH, Su ZH, Lu H, Liao YT, Li SL, Ma YJ. Assessment of Osteoporosis in Lumbar Spine: In Vivo Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone. Front Endocrinol (Lausanne) 2022; 13:801930. [PMID: 35250862 PMCID: PMC8888676 DOI: 10.3389/fendo.2022.801930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lin Yao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Pan-Hui Huang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | | | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Yu W, Zhang Z, Pan W, Guan W, Lin Q, Xia W, Li T, Hsieh E. Comparison of Differences in Bone Mineral Density Measurement With 3 Hologic Dual-Energy X-Ray Absorptiometry Scan Modes. J Clin Densitom 2021; 24:645-650. [PMID: 33504451 PMCID: PMC9674387 DOI: 10.1016/j.jocd.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA) is considered a diagnostic parameter for osteoporosis by the World Health Organization (WHO). DXA densitometers have different scanning modes for BMD measurements, although the specific scanning modes vary based upon the manufacturer. For DXA machines manufactured by Hologic, which are used globally, a range of scanning modes exist, including but not limited to (in order of decreasing spatial resolution) Array, Fast Array, and Express Array. Only a handful of prior studies have compared the reproducibility of BMD measurements across scan modes. The present study aimed to add to this body of literature by investigating the differences in BMD measured between 3 scanning modes in Hologic DXA machines at 19 different health centers. As part of cross-calibration activities for two multi-center studies in China measuring BMD, the European spine phantom (ESP, 1.000 g/cm2) was scanned on 19 different Hologic DXA machines. To measure differences in BMD between the 3 scan modes most commonly found on the Hologic models available (i.e., Array, Fast Array, Express Array), the ESP measurement was performed 10 times for each scan mode on each Hologic DXA machine. One-sample t test was used to compare the average difference between the measured ESP results of the 3 scanning modes at each hospital and reference ESP values. Single factor analysis of variance was performed to compare the average differences between the pairs of scanning modes using the reference ESP. Statistically significant differences between the measured ESP results with reference ESP values were found with each scanning mode at 19 hospitals (all p values <0.05). Consistent with this finding, differences in average BMD between the Array mode and Fast Array mode were invariably the smallest compared to differences seen between the other two pairs of scan modes. Significant differences were observed between average ESP BMD for the Array and Express Array scan modes (0.971 ± 0.013 vs 0.935 ± 0.027, p < 0.001), and between Fast Array and Express Array scan modes (0.972 ± 0.012 vs 0.935 ± 0.027, p < 0.001). However, no significant difference in average ESP BMD was observed between the Array and Fast Array scan modes (0.971 ± 0.013 vs 0.972 ± 0.012, p = 0.997). The selection of ideal scanning mode requires a balance of scanning time, radiation exposure, and measurement accuracy. In this ex vivo study, the Fast Array scanning mode appeared to be a reasonable choice compared with Array and Express Array for BMD measurements by Hologic DXA. Future in vivo studies can help guide the clinical application of these findings.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zaizhu Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Pan
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenmin Guan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Lin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, The National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Tsinghua University Medical College, Beijing, China
| | - Evelyn Hsieh
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Albano D, Agnollitto PM, Petrini M, Biacca A, Ulivieri FM, Sconfienza LM, Messina C. Operator-Related Errors and Pitfalls in Dual Energy X-Ray Absorptiometry: How to Recognize and Avoid Them. Acad Radiol 2021; 28:1272-1286. [PMID: 32839098 DOI: 10.1016/j.acra.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) is the most common modality for quantitative measurements of bone mineral density. Nevertheless, errors related to this exam are still very common, and may significantly impact on the final diagnosis and therapy. Operator-related errors may occur during each DXA step and can be related to wrong patient positioning, error in the acquisition process or in the scan analysis. The aim of this review is to provide a practical guide on how to recognize such errors in spine and hip DXA scan and how to avoid them, also presenting some of the most common artifacts encountered in clinical practice.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Paulo Moraes Agnollitto
- Radiology Division / CCIFM, Ribeirão Preto Medical School, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil
| | - Marcello Petrini
- Department of Radiology, Ospedale Guglielmo da Saliceto, via Taverna 49, Piacenza 29121, Italy
| | - Andrea Biacca
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy
| | - Fabio Massimo Ulivieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UO Medicina Nucleare, Milano, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, Milano 20161, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
9
|
de Souza FR, Dos Santos MR, Rochitte CE, Dos Santos RP, Jordão CP, Leite IS, da Fonseca GWP, Fonseca RA, de Oliveira TF, Yonamine M, Pereira RMR, Negrão CE, Alves DNNMJ. Decreased Native T1 Values and Impaired Myocardial Contractility in Anabolic Steroid Users. Int J Sports Med 2021; 43:183-191. [PMID: 34341973 DOI: 10.1055/a-1518-7953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anabolic androgenic steroid (AAS) abuse leads to myocardial toxicity. Human studies are conflicting about the myocardial fibrosis in AAS users. We evaluated cardiac tissue characterization, left ventricle (LV) function, and cardiac structure by cardiovascular magnetic resonance (CMR). Twenty strength-trained AAS users (AASU) aged 29±5 yr, 20 strength-trained AAS nonusers (AASNU), and 7 sedentary controls (SC) were enrolled. Native T1 mapping, late-gadolinium enhancement (LGE), extracellular volume (ECV), and myocardial strain were evaluated. AASU showed lower Native T1 values than AASNU (888±162 vs. 1020±179 ms p=0.047). Focal myocardial fibrosis was found in 2 AASU. AASU showed lower LV radial strain (30±8 vs. 38±6%, p<0.01), LV circumferential strain (-17±3 vs. -20±2%, p<0.01), and LV global longitudinal strain (-17±3 vs. -20±3%, p<0.01) than AASNU by CMR. By echocardiography, AASU demonstrated lower 4-chamber longitudinal strain than AASNU (-15±g3 vs. -18±2%, p=0.03). ECV was similar among AASU, AASNU, and SC (28±10 vs. 28±7 vs. 30±7%, p=0.93). AASU had higher LV mass index than AASNU and SC (85±14 vs. 64±8 vs. 58±5 g/m2, respectively, p<0.01). AAS abuse may be linked to decreased myocardial native T1 values, impaired myocardial contractility, and focal fibrosis. These alterations may be associated with maladaptive cardiac hypertrophy in young AAS users.
Collapse
Affiliation(s)
- Francis Ribeiro de Souza
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Rodrigues Dos Santos
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Parenquine Dos Santos
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Camila Paixão Jordão
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ivanhoe Stuart Leite
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Rafael Almeida Fonseca
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Franco de Oliveira
- Departamento de Farmacociências da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maurício Yonamine
- Departamento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Rodrigues Pereira
- Laboratório de Metabolismo Ósseo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Negrão
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Escola de Educação Física e Esporte da Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
11
|
Sawicki P, Tałałaj M, Życińska K, Zgliczyński WS, Wierzba W. Current Applications and Selected Technical Details of Dual-Energy X-Ray Absorptiometry. Med Sci Monit 2021; 27:e930839. [PMID: 34131097 PMCID: PMC8216008 DOI: 10.12659/msm.930839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The application of dual-energy X-ray absorptiometry (DXA) examinations in the assessment of bone mineral density (BMD) in the lumbar spine, hip, and forearm is the basic diagnostic method for recognition of osteoporosis. The constant development of DXA technique is due to the aging of societies and the increasing importance of osteoporosis as a public health problem. In order to assess the degree of bone demineralization in patients with hyperparathyroidism, forearm DXA examination is recommended. The vertebral fracture assessment (VFA) of the thoracic and lumbar spine, performed by a highly-skilled technician, is an interesting alternative to the X-ray examination. The DXA total body examination can be useful in the evaluation of fat redistribution among patients after bariatric surgery, in patients infected with HIV and receiving antiretroviral therapy, and in patients with metabolic diseases and suspected to have sarcopenia. The assessment of visceral adipose tissue (VAT) and detection of abdominal aortic calcifications may be useful in the prediction of cardiovascular events. The positive effect of anti-resorptive therapy may affect some parameters of DXA hip structure analysis (HSA). Long-term anti-resorptive therapy, especially with the use of bisphosphonates, may result in changes in the DXA image, which may herald atypical femur fractures (AFF). Reduction of the periprosthetic BMD in the DXA measurements can be used to estimate the likelihood of loosening the prosthesis and periprosthetic fractures. The present review aims to present current applications and selected technical details of DXA.
Collapse
Affiliation(s)
- Piotr Sawicki
- Department of Rheumatology, Systemic Connective Tissue Diseases and Rare Diseases, Central Clinical Hospital MSWiA in Warsaw, Warsaw, Poland
| | - Marek Tałałaj
- Department of Geriatrics, Internal Medicine and Metabolic Bone Diseases, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Katarzyna Życińska
- Department of Rheumatology, Systemic Connective Tissue Diseases and Rare Diseases, Central Clinical Hospital MSWiA in Warsaw, Warsaw, Poland.,Department of Family Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Waldemar Wierzba
- Central Clinical Hospital MSWiA in Warsaw, Warsaw, Poland.,UHE Satellite Campus in Warsaw, University of Humanities and Economics in Łódź, Warsaw, Poland
| |
Collapse
|
12
|
Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31:1607-1627. [PMID: 32458029 PMCID: PMC7429313 DOI: 10.1007/s00198-020-05438-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.
Collapse
Affiliation(s)
- D E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J Paccou
- Department of Rheumatology, MABlab UR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - A Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bioclinica, Inc., Hamburg, Germany
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Saad MM, Ahmed AT, Mohamed KE, Habba MR. Role of lumbar spine signal intensity measurement by MRI in the diagnosis of osteoporosis in post-menopausal women. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0046-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract
Background
Osteoporosis is a worldwide health problem and a common cause of bone fractures; the most common type of osteoporosis is post-menopausal type. MRI has a role in the diagnosis of osteoporosis and can be used as a screening tool, so the purpose of our study was to define a quantitative MRI-based score (M-score) for the detection of lumbar spine osteoporosis and to evaluate the correlation between lumbar spine signal intensity measured by MRI and BMD (bone mineral density) in post-menopausal women. Our case-control study involved 100 cases (50 old post-menopausal females as a case group and 50 healthy females as a control group of matched age). Both groups were subjected to history taking, dual-energy X-ray absorptiometry (DEXA), and conventional lumbar MRI. DEXA was performed for the lumbar spine and all scores (T-score, Z-score, BMD) were calculated. Lumbar MRI was performed (sagittal T1WI and T2WI) from L1–L4 levels. SNRL1–L4 and M-score were calculated from T1W images.
Results
All DEXA scores were significantly lower in post-menopausal females compared to the control group (P < 0.0001). Meanwhile, SNRL1–L4 and M-score were significantly higher among cases than controls (P < 0.0001). The diagnostic threshold of SNRL1–L4 and M-score for distinguishing osteoporotic from non-osteoporotic females was 104.5 for SNRL1–L4 with a sensitivity of 94%, specificity 60%, positive predictive values (PPV) 31%, and negative predictive values (NPV) 98%, and 3.5 for M-score with a sensitivity of 93.3%, specificity 83.5%, PPV 50%, and NPV 98.6%. SNRL1–L4 was negatively correlated with M-score (r = − 0.74, P < 0.0001), T-score (r = − 0.42, P < 0.0001), Z-score (r = − 0.32, P < 0.0001), and BMD (r = − 0.31, P < 0.0001). M-score was negatively correlated with T-score (r = − 0.48, P < 0.0001), Z-score (r = − 0.36, P < 0.0001), and BMD (r = − 0.37, P < 0.0001). M-score moderately agreed with T-score (κ = 0.5, P < 0.0001).
Conclusion
The MRI-based score (M-score) of the lumbar spine is an accurate quantitative method for distinguishing osteoporotic from non-osteoporotic females. M-score and SNRL1–L4 are significantly correlated with osteoporotic indices (T-score and BMD).
Collapse
|
14
|
Harmer H, Radford S, Smail M. FEASIBILITY STUDY OF USING PCXMC 2.0 TO ESTIMATE PATIENT DOSE ARISING FROM DEXA SCANS. RADIATION PROTECTION DOSIMETRY 2018; 181:418-422. [PMID: 29566224 DOI: 10.1093/rpd/ncy044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Patients undergoing dual energy X-ray absorption (DEXA) scans are exposed to small doses of ionizing radiation. Few papers have been published on the effective dose and organ dose for patients undergoing such scans on newer DEXA scanners. PCXMC 2.0 was used to calculate adult patient dose arising from DEXA scans. PCXMC 2.0 calculations were compared to published data and a discrepancy was noted for organ dose. Following this, effective and organ dose were measured on an anthropomorphic phantom using TLDs as a second comparison. The mean dose from 50 scans (minus background radiation) was measured. The dose calculated from PCXMC 2.0 compared to published data shows very good agreement for effective dose but a difference for organ dose. Our TLD data and PCXMC 2.0 data for organ dose have a closer agreement, within 20%. We are confident in using PCXMC 2.0 to calculate adult patient effective and organ dose arising from DEXA scans.
Collapse
Affiliation(s)
- Hollie Harmer
- Department of Medical Physics and Bioengineering, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sally Radford
- Department of Medical Physics and Bioengineering, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mary Smail
- Department of Medical Physics and Bioengineering, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
15
|
Messina C, Lastella G, Sorce S, Piodi LP, Rodari G, Giavoli C, Marchelli D, Guglielmi G, Ulivieri FM. Pediatric dual-energy X-ray absorptiometry in clinical practice: What the clinicians need to know. Eur J Radiol 2018; 105:153-161. [PMID: 30017273 DOI: 10.1016/j.ejrad.2018.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The importance of childhood and adolescence for bone development and mineral accrual is increasingly accepted, leading to a need of suitable methods for monitoring bone health even in pediatric setting. Among the several different imaging methods available for clinical measurement of bone mineral density (BMD) in children, dual-energy X-ray absorptiometry (DXA) is the most widely available and commonly used due to its reproducibility, negligible radiation dose and reliable pediatric reference data. Nevertheless, DXA in children has some technical specific features that should be known by those physicians who interpret and report this examination. We provide recommendations for optimal DXA scan reporting in pediatric setting, including indications, skeletal sites to be examined, parameters to be measured, timing of follow-up BMD measurements. Adequate report and analysis of DXA examinations are essential to prevent over- and underdiagnosis of bone mineral impairment in pediatric patients. In conclusion, a complete and exhaustive DXA report in children and adolescents is mandatory for an accurate diagnosis and a precise monitoring of pediatric bone status.
Collapse
Affiliation(s)
- Carmelo Messina
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20166, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20135, Milan, Italy.
| | - Giulia Lastella
- Postgraduate School of Radiodiagnostic, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Salvatore Sorce
- Postgraduate School of Physical Medicine and Rehabilitation, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Luca Petruccio Piodi
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Gastroenterology Unit, Via F.Sforza 35, 20122, Milan, Italy(1)
| | - Giulia Rodari
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via F. Sforza 35, 20122, Milan, Italy
| | - Claudia Giavoli
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via F. Sforza 35, 20122, Milan, Italy.
| | - Daniele Marchelli
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Nuclear Medicine Unit, Via F.Sforza 35, 20122, Milan, Italy.
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Viale L. Pinto 1, 71100, Foggia, Italy.
| | - Fabio Massimo Ulivieri
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Nuclear Medicine Unit, Bone Metabolic Unit, Via F.Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
16
|
Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg 2018. [PMID: 29541625 DOI: 10.21037/qims.2018.01.01] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoporosis and sarcopenia represent two major health problems with an increasing prevalence in the elderly population. The correlation between these diseases has been widely reported, leading to the development of the term "osteosarcopenia" to diagnose those patients suffering from both diseases. Several imaging methods for the diagnosis and management of osteoporosis exist, with dual-energy X-ray absorptiometry (DXA) being the most commonly used for measuring bone mineral density (BMD). Imaging technique other than DXA is represented by conventional radiography, computed tomography (CT) and ultrasound (US). Similarly, the imaging technologies used to detect loss of skeletal muscle mass in sarcopenia include DXA, CT, US and magnetic resonance imaging (MRI). These methods differ in terms of reliability, radiation exposure and costs. CT and MRI represent the gold standard for evaluating body composition (BC), but are costly and time-consuming. DXA remains the most often used technology for studying BC, being quick, widely available and with low radiation exposure.
Collapse
Affiliation(s)
- Carmelo Messina
- Unità Operativa di Radiologia Diagnostica ed Interventistica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Gabriele Maffi
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | | | - Fabio Massimo Ulivieri
- Bone Metabolic Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Medicina Nucleare, Milan, Italy
| | | | - Luca Maria Sconfienza
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Mattera M, Reginelli A, Bartollino S, Russo C, Barile A, Albano D, Mauri G, Messina C, Cappabianca S, Guglielmi G. Imaging of metabolic bone disease. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:197-207. [PMID: 29350648 PMCID: PMC6179066 DOI: 10.23750/abm.v89i1-s.7023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
Osteoporosis is the most important metabolic bone disease, with a wide distribution among the elderly. It is characterized by low bone mass and micro architectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Identify bone weakening with an appropriate and accurate use of diagnostic imaging is of critical importance in the diagnosis and follow-up of osteoporotic patients. The aim of this review is to evaluate the detection rates of the different imaging modalities in the evaluation of bone strength, in the assessment of fracture risk and in the management of fragility fractures. (www.actabiomedica.it)
Collapse
|
18
|
Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis. Eur J Radiol 2016; 85:1493-8. [PMID: 27048946 DOI: 10.1016/j.ejrad.2016.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022]
Abstract
Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults.
Collapse
|
19
|
A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol 2015; 25:2951-9. [PMID: 25899417 DOI: 10.1007/s00330-015-3699-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Signal intensity of lumbar-spine at magnetic resonance imaging (MRI) correlates to bone mineral density (BMD). Our aim was to define a quantitative MRI-based score to detect osteoporosis on lumbar-spine MRI. METHODS After Ethics Committee approval, we selected female patients who underwent both lumbar-spine MRI and dual-energy X-ray absorptiometry (DXA) and a reference group of 131 healthy females (20-29 years) who underwent lumbar-spine MRI. We measured the intra-vertebral signal-to-noise ratio in L1-L4. We introduced an MRI-based score (M-score), on the model of T-score. M-score diagnostic performance in diagnosing osteoporosis was estimated against DXA using receiver operator characteristic (ROC) analysis. RESULTS We included 226 patients (median age 65 years), 70 (31%) being osteoporotic at DXA. MRI signal-to-noise ratio correlated to BMD (r = -0.677, P < 0.001). M-score negatively correlated to T-score (r = -0.682, P < 0.001). Setting a 90%-specificity, an M-score threshold of 5.5 was found, distinguishing osteoporosis from non-osteoporosis (sensitivity 54%; ROC AUC 0.844). Thirty-one (14%) patients had a fragility fracture, with osteoporosis detected in 15 (48%) according to M-score and eight (26%) according to T-score (P = 0.016). CONCLUSIONS M-score obtained on lumbar spine MRI is a quantitative method correlating with osteoporosis. Its diagnostic value remains to be demonstrated on a large prospective cohort of patients. KEY POINTS • M-score is a quantitative score potentially screening osteoporosis on lumbar-spine MRI; • This method showed good intra- and inter-reader reproducibility; • M-score may be used for identifying patients who should undergo DXA.
Collapse
|
20
|
Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study. Skeletal Radiol 2015; 44:573-6. [PMID: 25109383 DOI: 10.1007/s00256-014-1980-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/17/2014] [Accepted: 07/31/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). MATERIALS AND METHODS A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 × CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. RESULTS Without phantom repositioning, the mean TBS (mm(-1)) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤ 2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. CONCLUSION Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable.
Collapse
|
21
|
Knapp KM, Welsman JR, Hopkins SJ, Shallcross A, Fogelman I, Blake GM. Obesity increases precision errors in total body dual-energy x-ray absorptiometry measurements. J Clin Densitom 2015; 18:209-16. [PMID: 25087044 DOI: 10.1016/j.jocd.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Total body (TB) dual-energy X-ray absorptiometry (DXA) is increasingly being used to measure body composition in research and clinical settings. This study investigated the effect of body mass index (BMI) and body fat on precision errors for total and regional TB DXA measurements of bone mineral density, fat tissue, and lean tissue using the GE Lunar Prodigy (GE Healthcare, Bedford, UK). One hundred forty-four women with BMI's ranging from 18.5 to 45.9 kg/m(2) were recruited. Participants had duplicate DXA scans of the TB with repositioning between examinations. Participants were divided into 3 groups based on their BMI, and the root mean square standard deviation and the percentage coefficient of variation were calculated for each group. The root mean square standard deviation (percentage coefficient of variation) for the normal (<25 kg/m²; n = 76), overweight (25-30 kg/m²; n = 36), and obese (>30 kg/m²; n = 32) BMI groups, respectively, were total BMD (g/cm(2)): 0.009 (0.77%), 0.009 (0.69%), 0.011 (0.91%); total fat (g): 545 (2.98%), 486 (1.72%), 677 (1.55%); total lean (g): 551 (1.42%), 540 (1.34%), and 781 (1.68%). These results suggest that serial measurements in obese subjects should be treated with caution because the least significant change may be larger than anticipated.
Collapse
Affiliation(s)
| | | | | | | | - Ignac Fogelman
- Imaging Sciences, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK
| | - Glen M Blake
- Imaging Sciences, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK
| |
Collapse
|
22
|
Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol 2015; 25:2194-8. [DOI: 10.1007/s00330-015-3606-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/25/2022]
|