1
|
Carnevale A, Pellegrino F, Bravi B, Gamberini MR, Gagliardi I, Reverberi R, Zatelli MC, Giganti M, Ambrosio MR. The role of opportunistic quantitative computed tomography in the evaluation of bone disease and risk of fracture in thalassemia major. Eur J Haematol 2022; 109:648-655. [PMID: 36000276 PMCID: PMC9826074 DOI: 10.1111/ejh.13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Dual-energy X-ray absorptiometry (DXA) remains the cornerstone for osteoporosis evaluation in Thalassemia major. However, several drawbacks have been observed in this unique setting. We sought to determine the correlation between quantitative CT (QCT) and DXA-derived parameters; secondarily, we aimed to investigate the role of the two techniques in predicting the risk of fracture. METHODS We retrospectively included patients with β-thalassemia major who had undergone both lumbar and femoral DXA examinations, and CT scans including the lumbar spine, performed for disparate diagnostic issues, within 4 months from the DXA. CT data were examined employing a phantom-less QCT method for bone mineral density (BMD) assessment. We also retrieved any spontaneous or fragility fractures occurring from 1 year before up to 5 years after the date of DXA scans. RESULTS The 43 patients were included. QCT measures were significantly higher than those determined by DXA. The gap between QCT and DXA values was strongly associated with patient age. The most powerful predictive variable for risk of fracture was the ACR classification based on volumetric BMD obtained by QCT. CONCLUSIONS DXA provided more negative measures than those determined by QCT. However, QCT seemed to evaluate thalassaemic osteopathy better than DXA, since volumetric BMD was a stronger predictor of fracture.
Collapse
Affiliation(s)
- Aldo Carnevale
- Department of Translational Medicine, Section of RadiologyUniversity of FerraraFerraraItaly
| | - Fabio Pellegrino
- Department of Translational Medicine, Section of RadiologyUniversity of FerraraFerraraItaly
| | - Beatrice Bravi
- Department of Translational Medicine, Section of RadiologyUniversity of FerraraFerraraItaly
| | - Maria Rita Gamberini
- Unit of Thalassaemia and Haemoglobinopathies Day Hospital, Regional HUB Centre, Department of MedicineAzienda Ospedaliero‐Universitaria Sant'AnnaFerraraItaly
| | - Irene Gagliardi
- Department of Medical Sciences, Section of Endocrinology and Internal MedicineUniversity of FerraraFerraraItaly
| | - Roberto Reverberi
- Blood Transfusion ServiceAzienda Ospedaliero‐Universitaria Sant'AnnaFerraraItaly
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology and Internal MedicineUniversity of FerraraFerraraItaly
| | - Melchiore Giganti
- Department of Translational Medicine, Section of RadiologyUniversity of FerraraFerraraItaly
| | - Maria Rosaria Ambrosio
- Department of Medical Sciences, Section of Endocrinology and Internal MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
2
|
Liu Q, Liu Z, Guo H, Liang J, Zhang Y. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskelet Disord 2022; 23:490. [PMID: 35610718 PMCID: PMC9128294 DOI: 10.1186/s12891-022-05458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The manual monitoring of callus with digital radiography (X-ray) is the primary bone healing evaluation, assessing the number of bridged callus formations. However, this method is subjective and nonquantitative. Recently, several quantitative monitoring methods, which could assess the recovery of the structure and biomechanical properties of the callus at different stages and the process of bone healing, have been extensively investigated. These methods could reflect the bone mineral content (BMC), bone mineral density (BMD), stiffness, callus and bone metabolism at the site of bone lengthening. In this review, we comprehensively summarized the latest techniques for evaluating bone healing during distraction osteogenesis (DO): 1) digital radiography; 2) dual-energy X-ray scanning; 3) ultrasound; 4) quantitative computed tomography; 5) biomechanical evaluation; and 6) biochemical markers. This evidence will provide novel and significant information for evaluating bone healing during DO in the future.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Associations between dietary patterns and osteoporosis-related outcomes in older adults: a longitudinal study. Eur J Clin Nutr 2020; 75:792-800. [PMID: 33190142 DOI: 10.1038/s41430-020-00806-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES To describe the associations of baseline dietary pattern scores with falls risk, bone mineral density (BMD), and incident fractures measured over 10 years in older adults. SUBJECTS/METHODS Dietary patterns were identified using exploratory factor analysis. Femoral neck (FN), hip, and lumbar spine (LS) BMD were measured using dual-energy X-ray absorptiometry, falls risk z-score using the Physiological Profile Assessment, and incident fractures by self-report. Linear mixed-effects models and log-binomial regression were used to estimate associations between baseline dietary pattern z-scores and outcomes. RESULTS Of 1098 participants at baseline, 567 were retained over 10 years. Four dietary patterns were derived: fruit and vegetable (FV), animal protein (AP), snack, and Western. FV pattern reduced falls risk at baseline by β = 0.05-0.08/SD and the annual decreases of FN and hip BMD were less for higher Western or AP pattern scores in all populations and women. The annual increase in LS of the entire population was greater with higher scores of FV, AP, and Western patterns (all β = 0.001 g/cm2/year/SD, p < 0.05). Higher scores of FV and snack were associated with a higher risk of LS BMD increasing over 10 years (p < 0.05 for all, except snack pattern in men) and incident fracture was not associated with any dietary pattern in the overall cohort and both men and women separately. CONCLUSIONS An FV dietary pattern may be beneficial for reducing falls risk. The associations of dietary patterns and BMD are modest in magnitude and did not translate into an improved fracture risk. Associations between diet and LS BMD may reflect osteoarthritis rather than osteoporosis.
Collapse
|
4
|
Wu S, Li Z, Zhang J, Rui Y. The genetic association between osteoprotegerin gene polymorphisms and fracture risk in Chinese Han population. J Cell Physiol 2019; 234:20603-20607. [PMID: 31025334 DOI: 10.1002/jcp.28664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Shuwen Wu
- Department of Orthopedics Baodi People's Hospital Tianjin China
| | - Zhiyong Li
- Department of Orthopedics Baodi People's Hospital Tianjin China
| | - Jian Zhang
- Department of Spinal Joint Surgery Baodi People's Hospital Tianjin China
| | - Yanxiang Rui
- Department of Hand and Foot Surgery Baodi People's Hospital Tianjin China
| |
Collapse
|
5
|
Johannesdottir F, Allaire B, Bouxsein ML. Fracture Prediction by Computed Tomography and Finite Element Analysis: Current and Future Perspectives. Curr Osteoporos Rep 2018; 16:411-422. [PMID: 29846870 DOI: 10.1007/s11914-018-0450-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures. RECENT FINDINGS CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment. CT-based techniques provide a robust approach for osteoporosis diagnosis and fracture prediction. It remains to be seen if further technical advances will improve fracture prediction compared to DXA aBMD. Future work should include more standardization in CT analyses, establishment of treatment intervention thresholds, and more studies to determine whether routine CT scans can be efficiently used to expand the number of individuals who undergo evaluation for fracture risk.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 120, Boston, MA, 02215, USA.
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| | - Brett Allaire
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 120, Boston, MA, 02215, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 120, Boston, MA, 02215, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Bone disease in monoclonal gammopathy of undetermined significance: results from a screened population-based study. Blood Adv 2017; 1:2790-2798. [PMID: 29296931 DOI: 10.1182/bloodadvances.2017010454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that individuals with monoclonal gammopathy of undetermined significance (MGUS) have an increased risk of fractures, although the underlying mechanisms remain unknown. Our aim was to analyze bone mineral density (BMD), bone volume, and risk of fractures among individuals with MGUS. We performed a screening using the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study cohort, consisting of 5764 elderly individuals, identifying 300 individuals with MGUS, and 275 with light-chain MGUS. Quantitative computerized tomography was performed in the lumbar spine and hip to evaluate BMD and bone geometry. Analysis of variance and the Tukey honest significance test were used to compare the groups. Hospital records were used to record fractures, with a mean follow-up of 6.9 years. Cox proportional hazard was used to compare fracture risk. No difference was found in BMD between subjects with MGUS and others in the spine (P = .34) or in total hip (P = .30). Individuals with MGUS had a significant increase in bone volume compared with others in the spine (P < .001) and total hip (P < .001). Overall, the risk of fractures was not significantly increased in individuals with MGUS (hazard ratio [HR], 1.19; 95% confidence interval [CI], 0.94-1.50). Men with MGUS had a significantly increased fracture risk, compared with other men (HR, 1.46; 95% CI, 1.03-2.08). Our results show that although individuals with MGUS do not have decreased BMD, bone volume is increased, and MGUS men have a 50% increased fracture risk. These results indicate that bone disease and fractures in MGUS differ from processes known from osteoporosis.
Collapse
|
7
|
Abstract
This review focuses on new developments and current controversies in the field of quantitative computed tomography. Recent positions of the International Society for Clinical Densitometry acknowledged the clinical value of quantitative computed tomography of the spine and the hip using clinical whole-body computed tomography (CT) scanners. Opportunistic screening summarizes a number of new approaches describing the dual use of clinical CT scans. For example, CT scans may have been taken for tumor diagnosis but may also be used for the prediction of high or low fracture risks as an additional benefit for the patient. The assessment of the cortical parameters is another topic of current research. In CT images of the spine and the hip, a number of techniques have been developed to determine the thickness, mass, and bone density of the cortex. In higher-spatial resolution peripheral CT images of the radius and tibia obtained from special purpose scanners, 1 focus is the measurement of cortical porosity. Two different approaches, one based on the direct segmentation of the pores and one based on cortical density, will be reviewed.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany; Bioclinica, Inc, Hamburg, Germany.
| |
Collapse
|
8
|
Dhainaut A, Hoff M, Syversen U, Haugeberg G. Technologies for assessment of bone reflecting bone strength and bone mineral density in elderly women: an update. ACTA ACUST UNITED AC 2016; 12:209-16. [PMID: 26900798 DOI: 10.2217/whe.15.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduced bone mineral density is a strong risk factor for fracture. The WHO's definition of osteoporosis is based on bone mineral density measurements assessed by dual x-ray absorptiometry. Several on other techniques than dual x-ray absorptiometry have been developed for quantitative assessment of bone, for example, quantitative ultrasound and digital x-ray radiogrammetry. Some of these techniques may also capture other bone properties than bone mass that contribute to bone strength, for example, bone porosity and microarchitecture. In this article we give an update on technologies which are available for evaluation primarily of bone mass and bone density, but also describe methods which currently are validated or are under development for quantitative assessment of other bone properties.
Collapse
Affiliation(s)
- Alvilde Dhainaut
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway
| | - Mari Hoff
- Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway.,Department of Rheumatology, St Olav's Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research & Molecular Medicine (IKM), NTNU, Trondheim, Norway.,Department of Endocrinology, St. Olav's Hospital, Norway
| | - Glenn Haugeberg
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Rheumatology, Hospital of Southern Norway, Kristiansand S, Norway
| |
Collapse
|
9
|
Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, Shepherd JA, Schousboe JT. Clinical Use of Quantitative Computed Tomography (QCT) of the Hip in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part I. J Clin Densitom 2015; 18:338-58. [PMID: 26277851 DOI: 10.1016/j.jocd.2015.06.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/21/2022]
Abstract
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography of the hip. The ISCD task force for quantitative computed tomography reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here, we discuss the agreed on ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts II and III address the advanced techniques of finite element analysis applied to computed tomography scans and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using computed tomography scans obtained for other diagnosis such as colonography was addressed.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Germany; Bioclinica, Hamburg, Germany.
| | - Thomas Lang
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - Sundeep Khosla
- Center for Clinical and Translational Science, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ling Qin
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, China
| | - Philippe Zysset
- Institute for Surgical Technology & Biomechanics, University of Bern, Switzerland
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - John A Shepherd
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - John T Schousboe
- Park Nicollet Clinic/HealthPartners, Minneapolis, MN, USA; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Steingrimsdottir L, Halldorsson TI, Siggeirsdottir K, Cotch MF, Einarsdottir BO, Eiriksdottir G, Sigurdsson S, Launer LJ, Harris TB, Gudnason V, Sigurdsson G. Hip fractures and bone mineral density in the elderly--importance of serum 25-hydroxyvitamin D. PLoS One 2014; 9:e91122. [PMID: 24621578 PMCID: PMC3951316 DOI: 10.1371/journal.pone.0091122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/07/2014] [Indexed: 11/21/2022] Open
Abstract
Background The significance of serum 25-hydroxyvitamin D [25(OH)D] concentrations for hip fracture risk of the elderly is still uncertain. Difficulties reaching both frail and healthy elderly people in randomized controlled trials or large cohort studies may in part explain discordant findings. We determined hazard ratios for hip fractures of elderly men and women related to serum 25(OH)D, including both the frail and the healthy segment of the elderly population. Methods The AGES-Reykjavik Study is a prospective study of 5764 men and women, age 66–96 years, based on a representative sample of the population of Reykjavik, Iceland. Participation was 71.8%. Hazard ratios of incident hip fractures and baseline bone mineral density were determined according to serum concentrations of 25(OH)D at baseline. Results Mean follow-up was 5.4 years. Compared with referent values (50–75 nmol/L), hazard ratios for hip fractures were 2.24 (95% CI 1.63, 3.09) for serum 25(OH)D <30 nmol/L, adjusting for age, sex, body mass index, height, smoking, alcohol intake and season, and 2.08 (95% CI 1.51, 2.87), adjusting additionally for physical activity. No difference in risk was associated with 30–50 nmol/L or ≥75 nmol/L in either model compared with referent. Analyzing the sexes separately, hazard ratios were 2.61 (95% CI 1.47, 4.64) in men and 1.93 (95% CI 1.31, 2.84) in women. Values <30 nmol/L were associated with significantly lower bone mineral density of femoral neck compared with referent, z-scores -0.14 (95% CI −0.27, −0.00) in men and −0.11 (95% CI −0.22, −0.01) in women. Conclusions Our results lend support to the overarching importance of maintaining serum 25(OH)D above 30 nmol/L for bone health of elderly people while potential benefits of having much higher levels could not be detected.
Collapse
Affiliation(s)
- Laufey Steingrimsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali University Hospital, Reykjavik, Iceland
- * E-mail:
| | - Thorhallur I. Halldorsson
- Unit for Nutrition Research, University of Iceland and Landspitali University Hospital, Reykjavik, Iceland
| | | | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, Maryland, United States of America
| | | | | | | | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology, Demography and Biometry, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Tamara B. Harris
- Intramural Research Program, Laboratory of Epidemiology, Demography and Biometry, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Gunnar Sigurdsson
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| |
Collapse
|