1
|
Deane AS, Byers KT. A review of the ethical considerations for the use of 3D printed materials in medical and allied health education and a proposed collective path forward. ANATOMICAL SCIENCES EDUCATION 2024; 17:1164-1173. [PMID: 39001638 DOI: 10.1002/ase.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 08/30/2024]
Abstract
3D scanning and printing technologies are quickly evolving and offer great potential for use in gross anatomical education. The use of human body donors to create digital scans and 3D printed models raises ethical concerns about donor informed consent, potential commodification, and access to and storage of potentially identifiable anatomical reproductions. This paper reviews available literature describing ethical implications for the application of these emerging technologies, existing published best practices for managing and sharing 2D imaging, and current adherence to these best practices by academic body donation programs. We conclude that informed consent is paramount for all uses of human donor and human donor-derived materials and that currently there is considerable diversity in adherence to established best practices for the management and sharing of 3D digital content derived from human donors. We propose a new and simplified framework for categorizing donor-derived teaching materials and the corresponding level of consent required for digital sharing. This framework proposes an equivalent minimum level of specific consent for human donor and human donor-derived materials relative to generalized, nonidentical teaching materials (i.e., artificial plastic models). Likewise, we propose that the collective path forward should involve the creation of a centralized, secure repository for digital human donor 3D content as a mechanism for accumulating, regulating, and controlling the distribution of properly consented human donor-derived 3D digital content that will also increase the availability of ethically created human-derived teaching materials while discouraging commodification.
Collapse
Affiliation(s)
- Andrew S Deane
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anthropology, Indiana University, Indianapolis, Indiana, USA
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
| | - Kelsey T Byers
- University of California, Office of the President Anatomical Donation Program, Oakland, CA, USA
| |
Collapse
|
2
|
Isikay I, Cekic E, Baylarov B, Tunc O, Hanalioglu S. Narrative review of patient-specific 3D visualization and reality technologies in skull base neurosurgery: enhancements in surgical training, planning, and navigation. Front Surg 2024; 11:1427844. [PMID: 39081485 PMCID: PMC11287220 DOI: 10.3389/fsurg.2024.1427844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Recent advances in medical imaging, computer vision, 3-dimensional (3D) modeling, and artificial intelligence (AI) integrated technologies paved the way for generating patient-specific, realistic 3D visualization of pathological anatomy in neurosurgical conditions. Immersive surgical simulations through augmented reality (AR), virtual reality (VR), mixed reality (MxR), extended reality (XR), and 3D printing applications further increased their utilization in current surgical practice and training. This narrative review investigates state-of-the-art studies, the limitations of these technologies, and future directions for them in the field of skull base surgery. We begin with a methodology summary to create accurate 3D models customized for each patient by combining several imaging modalities. Then, we explore how these models are employed in surgical planning simulations and real-time navigation systems in surgical procedures involving the anterior, middle, and posterior cranial skull bases, including endoscopic and open microsurgical operations. We also evaluate their influence on surgical decision-making, performance, and education. Accumulating evidence demonstrates that these technologies can enhance the visibility of the neuroanatomical structures situated at the cranial base and assist surgeons in preoperative planning and intraoperative navigation, thus showing great potential to improve surgical results and reduce complications. Maximum effectiveness can be achieved in approach selection, patient positioning, craniotomy placement, anti-target avoidance, and comprehension of spatial interrelationships of neurovascular structures. Finally, we present the obstacles and possible future paths for the broader implementation of these groundbreaking methods in neurosurgery, highlighting the importance of ongoing technological advancements and interdisciplinary collaboration to improve the accuracy and usefulness of 3D visualization and reality technologies in skull base surgeries.
Collapse
Affiliation(s)
- Ilkay Isikay
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Efecan Cekic
- Neurosurgery Clinic, Polatli Duatepe State Hospital, Ankara, Türkiye
| | - Baylar Baylarov
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Osman Tunc
- Btech Innovation, METU Technopark, Ankara, Türkiye
| | - Sahin Hanalioglu
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Park CK. 3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training. J Korean Neurosurg Soc 2022; 65:489-498. [PMID: 35762226 PMCID: PMC9271812 DOI: 10.3340/jkns.2021.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.
Collapse
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Zhou Z, Yang Z, Jiang S, Zhuo J, Zhu T, Ma S. Augmented reality surgical navigation system based on the spatial drift compensation method for glioma resection surgery. Med Phys 2022; 49:3963-3979. [PMID: 35383964 DOI: 10.1002/mp.15650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The number of patients who suffer from glioma has been increasing, and this malignancy is a serious threat to human health. The mainstream treatment for glioma is surgical resection; therefore, accurate resection can improve postoperative patient recovery. PURPOSE Many studies have investigated surgical navigation guided by mixed reality, with good outcomes. However, the limitations of mixed reality, such as spatial drift caused by environmental changes, limit its clinical application. Therefore, we present a mixed reality surgical navigation system for glioma resection. Preoperative information can be fused precisely with the real patient with the spatial compensation method to achieve clinically suitable accuracy. METHODS A head-mounted device was used to display virtual information, and a markerless spatial registration method was applied to precisely align the virtual anatomy with the real patient preoperatively. High-accuracy preoperative and intraoperative movement and spatial drift compensation methods were used to increase the positional accuracy of the mixed reality-guided glioma resection system when the patient's head is fixed to the bed frame. Several experiments were designed to validate the accuracy and efficacy of this system. RESULTS Phantom experiments were performed to test the efficacy and accuracy of this system under ideal conditions, and clinical tests were conducted to assess the performance of this system in clinical application. The accuracy of spatial registration was 1.18 mm in the phantom experiments and 1.86 mm in the clinical application. CONCLUSIONS Herein, we present a mixed reality-based multimodality fused surgical navigation system for assisting surgeons in intuitively identifying the glioma boundary intraoperatively. The experimental results indicate that this system has suitable accuracy and efficacy for clinical usage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zeyang Zhou
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.,Centre for advanced Mechanisms and Robotics, Tianjin University, Tianjin, 300350, China
| | - Jie Zhuo
- Department of Neurosurgery, Tianjin Huanhu hospital, Tianjin, 300200, China
| | - Tao Zhu
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shixing Ma
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Heat Sterilization Effects on Polymeric, FDM-Optimized Orthopedic Cutting Guide for Surgical Procedures. J Funct Biomater 2021; 12:jfb12040063. [PMID: 34842761 PMCID: PMC8628910 DOI: 10.3390/jfb12040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023] Open
Abstract
Improvements in software for image analysis have enabled advances in both medical and engineering industries, including the use of medical analysis tools to recreate internal parts of the human body accurately. A research analysis found that FDM-sourced elements have shown viability for a customized and reliable approach in the orthopedics field. Three-dimensional printing has allowed enhanced accuracy of preoperative planning, leading to reduced surgery times, fewer unnecessary tissue perforations, and fewer healing complications. Furthermore, using custom tools chosen for each procedure has shown the best results. Bone correction-related surgeries require customized cutting guides for a greater outcome. This study aims to assess the biopolymer-based tools for surgical operations and their ability to sustain a regular heat-sterilization cycle without compromising the geometry and fit characteristics for a proper procedure. To achieve this, a DICOM and FDM methodology is proposed for fast prototyping of the cutting guide by means of 3D engineering. A sterilization test was performed on HTPLA, PLA, and nylon polymers. As a result, the unique characteristics within the regular autoclave sterilization process allowed regular supplied PLA to show there were no significant deformations, whilst annealed HTPLA proved this material’s capability of sustaining repeated heat cycles due to its crystallization properties. Both of these proved that the sterilization procedures do not compromise the reliability of the part, nor the safety of the procedure. Therefore, prototypes made with a similar process as this proposal could be safely used in actual surgery practices, while nylon performed poorly because of its hygroscopic properties.
Collapse
|
6
|
The utilisation of 3D printing in paediatric neurosurgery. Childs Nerv Syst 2021; 37:1479-1484. [PMID: 33735402 DOI: 10.1007/s00381-021-05123-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
3D printing technology has evolved over the years and there is a growing interest in its application in paediatric neurosurgery. Modern 3D printers have enabled the development of patient-specific 3D models that provide a realistic representation of complex anatomies and will aid in planning complex procedures. Paediatric neurosurgical operations are challenging and hands-on training is restricted. Surgical simulation training with biomodel has provided a new paradigm for trainees to master their surgical skills before encountering similar scenarios in real-life environment. This paper reviews the aspects of 3D printing for preoperative planning and simulation-based surgical training in paediatric neurosurgery.
Collapse
|
7
|
Sommer KN, Shepard LM, Mitsouras D, Iyer V, Angel E, Wilson MF, Rybicki FJ, Kumamaru KK, Sharma UC, Reddy A, Fujimoto S, Ionita CN. Patient-specific 3D-printed coronary models based on coronary computed tomography angiography volumes to investigate flow conditions in coronary artery disease. Biomed Phys Eng Express 2020; 6:045007. [PMID: 33444268 DOI: 10.1088/2057-1976/ab8f6e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND 3D printed patient-specific coronary models have the ability to enable repeatable benchtop experiments under controlled blood flow conditions. This approach can be applied to CT-derived patient geometries to emulate coronary flow and related parameters such as Fractional Flow Reserve (FFR). METHODS This study uses 3D printing to compare such benchtop FFR results with a non-invasive CT-FFR research software algorithm and catheter based invasive FFR (I-FFR) measurements. Fifty-two patients with a clinical indication for I-FFR underwent a research Coronary CT Angiography (CCTA) prior to catheterization. CT images were used to measure CT-FFR and to generate patient-specific 3D printed models of the aortic root and three main coronary arteries. Each patient-specific model was connected to a programmable pulsatile pump and benchtop FFR (B-FFR) was derived from pressures measured proximal and distal to coronary stenosis using pressure transducers. B-FFR was measured for two coronary outflow rates ('normal', 250 ml min-1; and 'hyperemic', 500 ml min-1) by adjusting the model's distal coronary resistance. RESULTS Pearson correlations and ROC AUC were calculated using invasive I-FFR as reference. The Pearson correlation factor of CT-FFR and B-FFR-500 was 0.75 and 0.71, respectively. Areas under the ROCs for CT-FFR and B-FFR-500 were 0.80 (95%CI: 0.70-0.87) and 0.81 (95%CI: 0.64-0.91) respectively. CONCLUSION Benchtop flow simulations with 3D printed models provide the capability to measure pressure changes at any location in the model, for ultimately emulating the FFR at several simulated physiological blood flow conditions. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/show/NCT03149042.
Collapse
Affiliation(s)
- Kelsey N Sommer
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, United States of America. Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Identifying the Sources of Error When Using 3-Dimensional Printed Head Models with Surgical Navigation. World Neurosurg 2019; 134:e379-e386. [PMID: 31639505 DOI: 10.1016/j.wneu.2019.10.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The evaluation of sources of error when preparing, printing, and using 3-dimensional (3D) printed head models for training purposes. METHODS Two 3D printed models were designed and fabricated using actual patient imaging data with reference marker points embedded artificially within these models that were then registered to a surgical navigation system using 3 different methods. The first method uses a conventional manual registration, using the actual patient's imaging data. The second method is done by directly scanning the created model using intraoperative computed tomography followed by registering the model to a new imaging dataset manually. The third is similar to the second method of scanning the model but eventually uses an automatic registration technique. The errors for each experiment were then calculated based on the distance of the surgical navigation probe from the respective positions of the embedded marker points. RESULTS Errors were found in the preparation and printing techniques, largely depending on the orientation of the printed segment and postprocessing, but these were relatively small. Larger errors were noted based on a couple of variables: if the models were registered using the original patient imaging data as opposed to using the imaging data from directly scanning the model (1.28 mm vs. 1.082 mm), and the accuracy was best using the automated registration techniques (0.74 mm). CONCLUSION Spatial accuracy errors occur consistently in every 3D fabricated model. These errors are derived from the fabrication process, the image registration process, and the surgical process of registration.
Collapse
|
9
|
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdom Radiol (NY) 2018; 43:2809-2822. [PMID: 29619525 DOI: 10.1007/s00261-018-1554-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Collapse
|
10
|
George E, Liacouras P, Rybicki FJ, Mitsouras D. Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. Radiographics 2017; 37:1424-1450. [PMID: 28800287 PMCID: PMC5621728 DOI: 10.1148/rg.2017160165] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Despite the rapid growth of three-dimensional (3D) printing applications in medicine, the accuracy and reproducibility of 3D printed medical models have not been thoroughly investigated. Although current technologies enable 3D models to be created with accuracy within the limits of clinical imaging spatial resolutions, this is not always achieved in practice. Inaccuracies are due to errors that occur during the imaging, segmentation, postprocessing, and 3D printing steps. Radiologists' understanding of the factors that influence 3D printed model accuracy and the metrics used to measure this accuracy is key in directing appropriate practices and establishing reference standards and validation procedures. The authors review the various factors in each step of the 3D model printing process that contribute to model inaccuracy, including the intrinsic limitations of each printing technology. In addition, common sources of model inaccuracy are illustrated. Metrics involving comparisons of model dimensions and morphology that have been developed to quantify differences between 3D models also are described and illustrated. These metrics can be used to define the accuracy of a model, as compared with the reference standard, and to measure the variability of models created by different observers or using different workflows. The accuracies reported for specific indications of 3D printing are summarized, and potential guidelines for quality assurance and workflow assessment are discussed. Online supplemental material is available for this article. ©RSNA, 2017.
Collapse
Affiliation(s)
- Elizabeth George
- From the Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (E.G., D.M.); 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L.); and Department of Radiology, University of Ottawa Faculty of Medicine and The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (F.J.R.)
| | - Peter Liacouras
- From the Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (E.G., D.M.); 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L.); and Department of Radiology, University of Ottawa Faculty of Medicine and The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (F.J.R.)
| | - Frank J. Rybicki
- From the Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (E.G., D.M.); 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L.); and Department of Radiology, University of Ottawa Faculty of Medicine and The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (F.J.R.)
| | - Dimitrios Mitsouras
- From the Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (E.G., D.M.); 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L.); and Department of Radiology, University of Ottawa Faculty of Medicine and The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (F.J.R.)
| |
Collapse
|
11
|
Abstract
Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.
Collapse
|
12
|
Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B, Ho VB, Grant GT, Rybicki FJ. Medical 3D Printing for the Radiologist. Radiographics 2016; 35:1965-88. [PMID: 26562233 DOI: 10.1148/rg.2015140320] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Dimitris Mitsouras
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Peter Liacouras
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Amir Imanzadeh
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Andreas A Giannopoulos
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Tianrun Cai
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Kanako K Kumamaru
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Elizabeth George
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Nicole Wake
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Edward J Caterson
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Bohdan Pomahac
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Vincent B Ho
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Gerald T Grant
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Frank J Rybicki
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| |
Collapse
|
13
|
The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. Int J Comput Assist Radiol Surg 2016; 12:13-23. [PMID: 27480284 DOI: 10.1007/s11548-016-1461-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Virtual digital resources and printed models have become indispensable tools for medical training and surgical planning. Nevertheless, printed models of soft tissue organs are still challenging to reproduce. This study adopts open source packages and a low-cost desktop 3D printer to convert multiple modalities of medical images to digital resources (volume rendering images and digital models) and lifelike printed models, which are useful to enhance our understanding of the geometric structure and complex spatial nature of anatomical organs. MATERIALS AND METHODS Neuroimaging technologies such as CT, CTA, MRI, and TOF-MRA collect serial medical images. The procedures for producing digital resources can be divided into volume rendering and medical image reconstruction. To verify the accuracy of reconstruction, this study presents qualitative and quantitative assessments. Subsequently, digital models are archived as stereolithography format files and imported to the bundled software of the 3D printer. The printed models are produced using polylactide filament materials. RESULTS We have successfully converted multiple modalities of medical images to digital resources and printed models for both hard organs (cranial base and tooth) and soft tissue organs (brain, blood vessels of the brain, the heart chambers and vessel lumen, and pituitary tumor). Multiple digital resources and printed models were provided to illustrate the anatomical relationship between organs and complicated surrounding structures. Three-dimensional printing (3DP) is a powerful tool to produce lifelike and tangible models. CONCLUSIONS We present an available and cost-effective method for producing both digital resources and printed models. The choice of modality in medical images and the processing approach is important when reproducing soft tissue organs models. The accuracy of the printed model is determined by the quality of organ models and 3DP. With the ongoing improvement of printing techniques and the variety of materials available, 3DP will become an indispensable tool in medical training and surgical planning.
Collapse
|
14
|
Baskaran V, Štrkalj G, Štrkalj M, Di Ieva A. Current Applications and Future Perspectives of the Use of 3D Printing in Anatomical Training and Neurosurgery. Front Neuroanat 2016; 10:69. [PMID: 27445707 PMCID: PMC4919320 DOI: 10.3389/fnana.2016.00069] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and neurosurgery. A number of applications within these fields were found, with many significantly improving the quality of anatomy and surgical education, and the practice of neurosurgery. They also offered advantages over existing approaches and practices. It is envisaged that the number of useful applications will rise in the coming years, particularly as the costs of this technology decrease and its uptake rises.
Collapse
Affiliation(s)
| | - Goran Štrkalj
- Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
| | - Mirjana Štrkalj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Antonio Di Ieva
- Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia; Cancer Division, Garvan Institute of Medical ResearchSydney, NSW, Australia
| |
Collapse
|
15
|
Del Castillo-Calcáneo J, Donoghue JA. A Novel Method for 3-Dimensional Printing a Brain That Feels and Looks Like One: The Next Step in the Search of the Perfect Neurosurgical Simulator. World Neurosurg 2016; 91:620-2. [PMID: 27062917 DOI: 10.1016/j.wneu.2016.03.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Juan Del Castillo-Calcáneo
- Neurosurgery, National Autonomous University of Mexico (UNAM), Mexico City, Mexico; Neurosurgery Department, Mexican Oil Company (Pemex) High Specialty Hospital, Mexico City, Mexico.
| | - Jacob Alexander Donoghue
- Harvard Medical School, Boston, Massachusetts, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training. World Neurosurg 2015; 88:188-198. [PMID: 26724615 DOI: 10.1016/j.wneu.2015.12.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Shorter working times, reduced operative exposure to complex procedures, and increased subspecialization have resulted in training constraints within most surgical fields. Simulation has been suggested as a possible means of acquiring new surgical skills without exposing patients to the surgeon's operative "learning curve." Here we review the potential impact of 3-dimensional printing on simulation and training within cranial neurosurgery and its implications for the future. METHODS In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search of PubMed, OVID MEDLINE, Embase, and the Cochrane Database of Systematic Reviews was performed. RESULTS In total, 31 studies relating to the use of 3-dimensional (3D) printing within neurosurgery, of which 16 were specifically related to simulation and training, were identified. The main impact of 3D printing on neurosurgical simulation training was within vascular surgery, where patient-specific replication of vascular anatomy and pathologies can aid surgeons in operative planning and clip placement for reconstruction of vascular anatomy. Models containing replicas of brain tumors have also been reconstructed and used for training purposes, with some providing realistic representations of skin, subcutaneous tissue, bone, dura, normal brain, and tumor tissue. CONCLUSION 3D printing provides a unique means of directly replicating patient-specific pathologies. It can identify anatomic variation and provide a medium in which training models can be generated rapidly, allowing the trainee and experienced neurosurgeon to practice parts of operations preoperatively. Future studies are required to validate this technology in comparison with current simulators and show improved patient outcomes.
Collapse
|
17
|
Abstract
INTRODUCTION Training in intraventricular endoscopy is particularly challenging because the volume of cases is relatively small and the techniques involved are unlike those usually used in conventional neurosurgery. Present training models are inadequate for various reasons. Using 3-dimensional (3D) printing techniques, models with pathology can be created using actual patient's imaging data. This technical article introduces a new training model based on a patient with hydrocephalus secondary to a pineal tumour, enabling the models to be used to simulate third ventriculostomies and pineal biopsies. METHODS Multiple models of the head of a patient with hydrocephalus were created using 3D rapid prototyping technique. These models were modified to allow for a fluid-filled ventricular system under appropriate tension. The models were qualitatively assessed in the various steps involved in an endoscopic third ventriculostomy and intraventricular biopsy procedure, initially by 3 independent neurosurgeons and subsequently by 12 participants of an intraventricular endoscopy workshop. RESULTS All 3 surgeons agreed on the ease and usefulness of these models in the teaching of endoscopic third ventriculostomy, performing endoscopic biopsies, and the integration of navigation to ventriculoscopy. Their overall score for the ventricular model realism was above average. The 12 participants of the intraventricular endoscopy workshop averaged between a score of 4.0 to 4.6 of 5 for every individual step of the procedure. DISCUSSION Neurosurgical endoscopic training currently is a long process of stepwise training. These 3D printed models provide a realistic simulation environment for a neuroendoscopy procedure that allows safe and effective teaching of navigation and endoscopy in a standardized and repetitive fashion.
Collapse
|
18
|
Mert A, Micko A, Donat M, Maringer M, Buehler K, Sutherland GR, Knosp E, Wolfsberger S. An advanced navigation protocol for endoscopic transsphenoidal surgery. World Neurosurg 2015; 82:S95-105. [PMID: 25496642 DOI: 10.1016/j.wneu.2014.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To report our clinical experience with an advanced navigation protocol that provides seamless integration into the operating workflow of endoscopic transsphenoidal surgery. PATIENTS AND METHODS From 32 consecutive cases of endoscopic transsphenoidal surgery, an optimal setup of continuous electromagnetic instrument navigation was created. Additionally, our standard multimodality image navigation of T1-weighted magnetic resonance (MR) images for soft tissue, MR angiogram for vascular structures, and computed tomography (CT) for solid bone was advanced by the addition of a CT surface rendering for fine paranasal sinus structures. The anatomic structures visualized and their clinical impacts were compared between standard and advanced visualization protocol. Bone-windowed CT images served as reference. The accuracy of the navigation setup was assessed by intraoperative landmark tests. Potential tissue shift was calculated by comparing pre- and postoperative MR angiograms of 20 macroadenomas. RESULTS After a learning curve of 2 cases (1 ferromagnetic interference and 1 dislocation of the patient reference tracker), the advanced navigation protocol was feasible in 30 cases. Advanced multimodality imaging was able to visualize significantly finer paranasal sinus structures than multimodality image navigation without CT surface rendering, equal to bone-windowed CT images (P < 0.001, McNemar test). This was found helpful for orientation in cases of complex sphenoid sinus anatomy. The accuracy of the advanced navigation setup corresponded to standard optic navigation with skull fixation. A tissue shift of median 2 mm (range 0-9 mm) was observed in the posterior genu of the internal carotid arteries after tumor resection. CONCLUSIONS The advanced navigation protocol permits continuous suction-tracked navigation guidance during endoscopic transsphenoidal surgery and optimal visualization of solid bone, fine paranasal sinus structures, soft-tissue and vascular structures. This may add to the safety of the procedure especially in cases of anatomical variations and in cases of recurrent adenomas with distorted anatomy.
Collapse
Affiliation(s)
- Ayguel Mert
- Department of Neurosurgery, Medical University Vienna, Austria
| | - Alexander Micko
- Department of Neurosurgery, Medical University Vienna, Austria
| | - Markus Donat
- Department of Neurosurgery, Medical University Vienna, Austria
| | | | - Katja Buehler
- VRVis Research Centre for Virtual Reality and Visualization GmbH, Vienna, Austria
| | - Garnette R Sutherland
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Canada
| | - Engelbert Knosp
- Department of Neurosurgery, Medical University Vienna, Austria
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University Vienna, Austria; Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Canada.
| |
Collapse
|
19
|
McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. ANATOMICAL SCIENCES EDUCATION 2014; 7:479-86. [PMID: 24976019 DOI: 10.1002/ase.1475] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 05/11/2023]
Abstract
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form.
Collapse
Affiliation(s)
- Paul G McMenamin
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
20
|
Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZAA, Wormald PJ, Van Hasselt CA, Waran V. Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 2014; 272:753-7. [PMID: 25294050 DOI: 10.1007/s00405-014-3300-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.
Collapse
Affiliation(s)
- Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Higurashi M, Qian Y, Zecca M, Park YK, Umezu M, Morgan MK. Surgical training technology for cerebrovascular anastomosis. J Clin Neurosci 2014; 21:554-8. [DOI: 10.1016/j.jocn.2013.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
22
|
Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, Rahman ZAA, Owen SLF, Aziz TZ. Injecting realism in surgical training-initial simulation experience with custom 3D models. JOURNAL OF SURGICAL EDUCATION 2014; 71:193-197. [PMID: 24602709 DOI: 10.1016/j.jsurg.2013.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/11/2013] [Accepted: 08/31/2013] [Indexed: 06/03/2023]
Abstract
UNLABELLED The traditionally accepted form of training is direct supervision by an expert; however, modern trends in medicine have made this progressively more difficult to achieve. A 3-dimensional printer makes it possible to convert patients imaging data into accurate models, thus allowing the possibility to reproduce models with pathology. This enables a large number of trainees to be trained simultaneously using realistic models simulating actual neurosurgical procedures. The aim of this study was to assess the usefulness of these models in training surgeons to perform standard procedures that require complex techniques and equipment. METHODS Multiple models of the head of a patient with a deep-seated small thalamic lesion were created based on his computed tomography and magnetic resonance imaging data. A workshop was conducted using these models of the head as a teaching tool. The surgical trainees were assessed for successful performance of the procedure as well as the duration of time and number of attempts taken to learn them. FINDINGS All surgical candidates were able to learn the basics of the surgical procedure taught in the workshop. The number of attempts and time taken reflected the seniority and previous experience of each candidate. DISCUSSION Surgical trainees need multiple attempts to learn essential procedures. The use of these models for surgical-training simulation allows trainees to practice these procedures repetitively in a safe environment until they can master it. This would theoretically shorten the learning curve while standardizing teaching and assessment techniques of these trainees.
Collapse
Affiliation(s)
- Vicknes Waran
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Vairavan Narayanan
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravindran Karuppiah
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Devaraj Pancharatnam
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hari Chandran
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rajagopalan Raman
- Department of ENT, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sarah L F Owen
- Centre for Simulation in Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, Raman R, Prepageran N, Chandran H, Rahman ZAA. The creation and verification of cranial models using three-dimensional rapid prototyping technology in field of transnasal sphenoid endoscopy. Am J Rhinol Allergy 2013; 26:132-136. [PMID: 23168144 DOI: 10.2500/ajra.2012.26.3808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Surgical navigation systems have been used increasingly in guiding complex ear, nose, and throat surgery. Although these are helpful, they are only beneficial intraoperatively; thus, the novice surgeon will not have the preoperative training or exposure that can be vital in complex procedures. In addition, there is a lack of reliable models to give surgeons hands-on training in performing such procedures. METHODS A technique using an industrial rapid prototyping process by three-dimensional (3D) printing was developed, from which accurate spatial models of the nasal cavity, paranasal sinuses (sphenoid sinus in particular), and intrasellar/pituitary pathology were produced, according to the parameters of an individual patient. Image-guided surgical (IGS) techniques on two different platforms were used during endoscopic transsphenoidal surgery to test and validate the anatomical accuracy of the sinus models by comparing the models with radiological images of the patient on IGS. RESULTS It was possible to register, validate, and navigate accurately on these models using commonly available navigation stations, matching accurately the anatomy of the model to the IGS images. CONCLUSION These 3D models can be reliably used for teaching/training and preoperative planning purposes.
Collapse
Affiliation(s)
- Vicknes Waran
- Division of Neurosurgery, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Spottiswoode BS, van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg 2013; 91:162-9. [PMID: 23446024 DOI: 10.1159/000345264] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neurosurgeons regularly plan their surgery using magnetic resonance imaging (MRI) images, which may show a clear distinction between the area to be resected and the surrounding healthy brain tissue depending on the nature of the pathology. However, this distinction is often unclear with the naked eye during the surgical intervention, and it may be difficult to infer depth and an accurate volumetric interpretation from a series of MRI image slices. OBJECTIVES In this work, MRI data are used to create affordable patient-specific 3-dimensional (3D) scale models of the brain which clearly indicate the location and extent of a tumour relative to brain surface features and important adjacent structures. METHODS This is achieved using custom software and rapid prototyping. In addition, functionally eloquent areas identified using functional MRI are integrated into the 3D models. RESULTS Preliminary in vivo results are presented for 2 patients. The accuracy of the technique was estimated both theoretically and by printing a geometrical phantom, with mean dimensional errors of less than 0.5 mm observed. CONCLUSIONS This may provide a practical and cost-effective tool which can be used for training, and during neurosurgical planning and intervention.
Collapse
Affiliation(s)
- B S Spottiswoode
- MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shen F, Chen B, Guo Q, Qi Y, Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg 2012; 8:169-79. [PMID: 22752350 DOI: 10.1007/s11548-012-0775-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective of this work is to develop a preoperative reconstruction plate design system for unilateral pelvic and acetabular fracture reduction and internal fixation surgery, using computer graphics and augmented reality (AR) techniques, in order to respect the patient-specific morphology and to reduce surgical invasiveness, as well as to simplify the surgical procedure. MATERIALS AND METHODS Our AR-aided implant design and contouring system is composed of two subsystems: a semi-automatic 3D virtual fracture reduction system to establish the patient-specific anatomical model and a preoperative templating system to create the virtual and real surgical implants. Preoperative 3D CT data are taken as input. The virtual fracture reduction system exploits the symmetric nature of the skeletal system to build a "repaired" pelvis model, on which reconstruction plates are planned interactively. A lightweight AR environment is set up to allow surgeons to match the actual implants to the digital ones intuitively. The effectiveness of this system is qualitatively demonstrated with 6 clinical cases. Its reliability was assessed based on the inter-observer reproducibility of the resulting virtual implants. RESULTS The implants designed with the proposed system were successfully applied to all cases through minimally invasive surgeries. After the treatments, no further complications were reported. The inter-observer variability of the virtual implant geometry is 0.63 mm on average with a standard deviation of 0.49 mm. The time required for implant creation with our system is 10 min on average. CONCLUSION It is feasible to apply the proposed AR-aided design system for noninvasive implant contouring for unilateral fracture reduction and internal fixation surgery. It also enables a patient-specific surgical planning procedure with potentially improved efficiency.
Collapse
Affiliation(s)
- Fangyang Shen
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.
| | | | | | | | | |
Collapse
|