1
|
Niroshika KKH, Weerakoon K, Molagoda IMN, Samarakoon KW, Weerakoon HT, Jayasooriya RGPT. Exploring the dynamic role of circulating soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a diagnostic and prognostic marker; a review. Biochem Biophys Res Commun 2025; 751:151415. [PMID: 39923464 DOI: 10.1016/j.bbrc.2025.151415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is a TNF superfamily cytokine primarily acknowledged for its ability to selectively induce apoptosis in cancer cells. Beyond its antitumor effects, recent literature emphasizes the pleiotropic functions of TRAIL in physiological states and acute/chronic non-malignant diseases indicating its potential to be a breakthrough in diagnostics. This review explores the current understanding of the dynamic role of circulating soluble TRAIL (sTRAIL) and its potential as both a diagnostic and prognostic marker. Multiple in vitro, in vivo, and clinical studies in a wide range of neoplastic and non-neoplastic diseases including infectious diseases have been carried out to explore the potential role of sTRAIL in disease pathogenesis and as well as the possibilities of using it as a diagnostic and prognostic marker. The expression of sTRAIL seems to be context-dependent suggesting further research, particularly towards establishing disease-specific cutoff values. However, the lack of standardization in the serum sTRAIL estimation and the absence of reference intervals remain significant barriers to its clinical application. Addressing these challenges is essential for using circulating sTRAIL as an accurate diagnostic and prognostic marker in clinical practice.
Collapse
Affiliation(s)
- K K H Niroshika
- Faculty of Graduate Studies, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka; Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K Weerakoon
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - I M N Molagoda
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K W Samarakoon
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - H T Weerakoon
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka.
| | - R G P T Jayasooriya
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka.
| |
Collapse
|
2
|
Yang L, Cao M, Tian J, Cui P, Ai L, Li X, Li H, Gao M, Fang L, Zhao L, Gong F, Zhou C. Identification of Plasma Inflammatory Markers of Adolescent Depression Using the Olink Proteomics Platform. J Inflamm Res 2023; 16:4489-4501. [PMID: 37849645 PMCID: PMC10577244 DOI: 10.2147/jir.s425780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose The quality of life of worldwide adolescents has been seriously affected by depression. Notably, the inflammatory response is closely associated with the pathophysiology of depression. The present study applied a novel targeted proteomics technology, Olink proximity extension assay (PEA), to profile circulating immune-related proteins in adolescents with depression. Methods In the present study, the expression levels of 92 inflammation-related proteins were compared between adolescents with depression (ADs) (n=15) and healthy controls (HCs) (n=15), using the OLINK PEA inflammation panel. We further validated 5 top proteins that were identified through KEGG and GO analyses between 40 HCs and 50 ADs, including CCL4, CXCL5, CXCL6, CXCL11, and IL-18 using enzyme linked immunosorbent assay (ELISA). Results We identified 13 differentially expressed proteins between the two cohorts, including 5 up-regulated and 8 down-regulated proteins. Among them, the TRAIL protein levels were significantly negatively correlated with the HAMA-14 score (r=-0.538, p= 0.038), and the levels of transforming growth factor α (TGF-α) were significantly associated with a change in appetite (r = -0.658, p = 0.008). After validation by ELISA, CCL4, CXCL5, CXCL11, and IL-18 showed significant changes between ADs and HCs (p < 0.05), while CXCL6 showed an up-regulated tendency in ADs (p=0.0673). The pooled diagnostic efficacy (area under the curve [AUC]) of these five inflammation markers in clinical diagnosis for adolescent depression was 0.819 (95% CI: 0.735-0.904). Conclusion We report a number of inflammation-related plasma biomarkers, which uncover a potential involvement of chemokines, cytokines, and cytokine receptors in adolescent depression. Their roles in the pathophysiology of depression need to be further elucidated.
Collapse
Affiliation(s)
- Ling Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
| | - Maolin Cao
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Tian
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Peijin Cui
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ling Ai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xue Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Menghan Gao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
| | - Fang Gong
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Zhukovsky C, Herman S, Wiberg A, Cunningham JL, Kultima K, Burman J. Urokinase, CX3CL1, CCL2, TRAIL and IL-18 induced by interferon-β treatment. Acta Neurol Scand 2021; 143:602-607. [PMID: 33626181 DOI: 10.1111/ane.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To identify serum proteins associated with MS and affected by interferon beta treatment. METHODS Plasma samples from 29 untreated relapsing-remitting MS patients and 15 healthy controls were investigated with a multiplexed panel containing 92 proteins related to inflammation. Follow-up samples were available from 13 patients at 1 and 3 months after initiation of treatment with interferon beta-1a. RESULTS Ten proteins were differentially expressed in MS patients. Five of these were altered by treatment with IFN-β 1a: uPA, CX3CL1, CCL2, TRAIL and IL18. CONCLUSION CCL2 and TRAIL were confirmed to be modulated with interferon beta treatment in MS. As novel findings, we now report that uPA and CX3CL1 were differentially expressed in MS and increased after IFN-beta-1a treatment. Conflicting results have been reported on how interferon beta affects IL-18.
Collapse
Affiliation(s)
| | - Stephanie Herman
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology Uppsala University Uppsala Sweden
| | | | - Kim Kultima
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Joachim Burman
- Department of Neuroscience Neurology Uppsala University Uppsala Sweden
| |
Collapse
|
4
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers (Basel) 2019; 11:cancers11070954. [PMID: 31284696 PMCID: PMC6678900 DOI: 10.3390/cancers11070954] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.
Collapse
|
7
|
Abstract
Severe aplastic anemia (SAA) is an autoimmune disease caused mainly by activated T lymphocytes. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of TNF family, which can induce apoptosis and play a significant role in the pathogenesis of many autoimmune disorders. In this study, we sought to investigate the role of TRAIL in peripheral CD8+ T cells (CTLs) from SAA patients to clarify the autoimmune mechanisms of bone marrow failure in SAA. The expression of TRAIL and TRAIL-R2 in CTLs from SAA patients and normal controls were determined by flow cytometry, real-time PCR, and western blot. Expression of perforin and granzyme B and apoptosis in CTLs were evaluated by flow cytometry. The expression of TRAIL and TRAIL-R2 in SAA patients was significantly decreased compared with controls; however, there was no statistical difference in TRAIL mRNA expression between the two groups. TRAIL expression in CTLs was negatively correlated with the expression of perforin and granzyme B, and negatively correlated with CTLs apoptosis in SAA patients. The TRAIL pathway may be responsible for abnormal CTL activation in SAA patients. Further study of TRAIL and its receptors may elucidate the pathogenesis of SAA.
Collapse
|
8
|
Taheri M, Nemati S, Movafagh A, Saberi M, Mirfakhraie R, Eftekharian MM, Arsang-Jang S, Rezagholizadeh A, Sayad A. TRAIL gene expression analysis in multiple sclerosis patients. Hum Antibodies 2016; 24:33-38. [PMID: 27472871 DOI: 10.3233/hab-160291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) as an autoimmune disorder in which the insulating covers of neurons in the Central Nervous System are destructed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an immunomodulatory molecule to protect against T cells hyper activation. METHODS In this Case-control study, we compare TRAIL gene expression in peripheral blood between 50 relapse remitting MS patients and 50 healthy controls by TaqMan Real time PCR. All the patients were negative for HLA-DRB1*15 susceptible allele, normal serum vitamin D, responder to Interferon beta. All the health individuals were matched to patients. Also, we tried to find correlation between TRAIL gene expression and clinical characteristics of patients. RESULTS No statistically significant difference was found in TRAIL mRNA expression between MS patients and controls (p> 0.05). There was no correlation in the TRAIL expression and age of onset, disease duration and Expanded Disability Status Scale of Kurtzke (EDSS). As IFN-b may have stimulatory effects on immunoregulatory function of TRAIL and all of our patients were treated with interferon beta and were responder, it lead to no significant change in TRAIL expression. We suggest comparing between responders and non-responders should be investigated.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Nemati
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saberi
- Department of Medical Genetics, Tehran medical University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Eftekharian
- Neurophysiology Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
- Molecular Immunology Research Group, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Amir Rezagholizadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci 2016; 73:2017-27. [PMID: 26910728 PMCID: PMC4834097 DOI: 10.1007/s00018-016-2164-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/01/2022]
Abstract
The TNF-related apoptosis inducing ligand TRAIL is a member of the TNF superfamily that has been firstly studied and evaluated for its anti-cancer activity, and the insights into its biology have already led to the identification of several TRAIL-based anticancer strategies with strong clinical therapeutic potentials. Nonetheless, the TRAIL system is far more complex and it can lead to a wider range of biological effects other than the ability of inducing apoptosis in cancer cells. By virtue of the different receptors and the different signalling pathways involved, TRAIL plays indeed a role in the regulation of different processes of the innate and adaptive immune system and this feature makes it an intriguing molecule under consideration in the development/progression/treatment of several immunological disorders. In this context, central nervous system represents a peculiar anatomic site where, despite its "status" of immune-privileged site, both innate and adaptive inflammatory responses occur and are involved in several pathological conditions. A number of studies have evaluated the role of TRAIL and of TRAIL-related pathways as pro-inflammatory or protective stimuli, depending on the specific pathological condition, confirming a twofold nature of this molecule. In this light, the aim of this review is to summarize the main preclinical evidences of the potential/involvement of TRAIL molecule and TRAIL pathways for the treatment of central nervous system disorders and the key suggestions coming from their assessment in preclinical models as proof of concept for future clinical studies.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|