1
|
Kiss-Bodolay D, Al Awadhi A, Lövblad KO, Momjian S, Kiss JZ, Schaller K. The Fork sign: a new cortical landmark in the human brain. Brain Commun 2024; 6:fcae398. [PMID: 39564127 PMCID: PMC11576098 DOI: 10.1093/braincomms/fcae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/27/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
In the cerebral cortex, establishing the precise relationship between functional areas and the macroscopic anatomy of gyri and sulci has a paramount importance for the field of neuroimaging and neurosurgical interventions. The anatomical orientation should start with the identification of anatomical landmarks to set the anatomo-functional boundaries. The human central sulcus region stands out as a well-defined structural and functional unit housing the primary motor and sensory cortices and is considered as key region to be identified during brain surgery. While useful anatomical landmarks have been discovered, especially in the axial plane, the identification of this region in the sagittal plane remains sometimes difficult. Using cadaveric whole brains and multi-modal analysis of MRI brain scans, we systematically observed a tuning fork-shaped sulco-gyral configuration centred around the gyral continuum bridging the pre-central gyrus with the middle frontal gyrus. We provide evidence that this 'Fork sign' is a consistent morphological feature visible on the lateral surface of the brain and a reliable radioanatomical landmark for identifying central sulcus region structures on sagittal MRI images, including the motor hand area.
Collapse
Affiliation(s)
- Daniel Kiss-Bodolay
- Department of Neurosurgery, Geneva University Hospital, Geneva 1205, Switzerland
| | - Abdullah Al Awadhi
- Department of Neurosurgery, Geneva University Hospital, Geneva 1205, Switzerland
| | - Karl-Olof Lövblad
- Department of Radiology, Geneva University Hospital, Geneva 1205, Switzerland
- Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery, Geneva University Hospital, Geneva 1205, Switzerland
- Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Jozsef Zoltan Kiss
- Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, Geneva University Hospital, Geneva 1205, Switzerland
- Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
2
|
Morales-Roccuzzo D, Sabahi M, Obrzut M, Najera E, Monterroso-Cohen D, Bsat S, Adada B, Borghei-Razavi H. Posterior vascular anatomy of the encephalon: a comprehensive review. Surg Radiol Anat 2024; 46:843-857. [PMID: 38652250 PMCID: PMC11161439 DOI: 10.1007/s00276-024-03358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE This article presents a comprehensive exploration of neurovascular anatomy of the encephalon, focusing specifically on the intricate network within the posterior circulation and the posterior fossa anatomy; enhancing understanding of its dynamics, essential for practitioners in neurosurgery and neurology areas. METHOD A profound literature review was conducted by searching the PubMed and Google Scholar databases using main keywords related to neurovascular anatomy. The selected literature was meticulously scrutinized. Throughout the screening of pertinent papers, further articles or book chapters were obtained through additional assessment of the reference lists. Furthermore, four formalin-fixed, color latex-injected cadaveric specimens preserved in 70% ethanol solution were dissected under surgical microscope (Leica Microsystems Inc, 1700 Leider Ln, Buffalo Grove, IL 60089, USA), using microneurosurgical as well as standard instruments, and a high-speed surgical drill (Stryker Instruments 1941 Stryker Way Portage, MI 49002, USA). Ulterior anatomical dissection was performed. RESULTS Detailed examination of the basilar artery (BA), a common trunk formed by the union of the left and right vertebral arteries, denoted a tortuous course across the basilar sulcus. Emphasis is then placed on the Posterior Inferior Cerebellar Artery (PICA), Anterior Inferior Cerebellar Artery (AICA) and Superior Cerebellar Artery (SCA). Each artery's complex course through the posterior fossa, its divisions, and potential stroke-related syndromes are explored in detail. The Posterior Cerebral Artery (PCA) is subsequently unveiled. The posterior fossa venous system is explained, categorizing its channels. A retrograde exploration traces the venous drainage back to the internal jugular vein, unraveling its pathways. CONCLUSION This work serves as a succinct yet comprehensive guide, offering fundamental insights into neurovascular anatomy within the encephalon's posterior circulation. Intended for both novice physicians and seasoned neuroanatomists, the article aims to facilitate a more efficient clinical decision-making in neurosurgical and neurological practices.
Collapse
Affiliation(s)
- Diego Morales-Roccuzzo
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - Michal Obrzut
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - Edinson Najera
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - David Monterroso-Cohen
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - Shadi Bsat
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| |
Collapse
|
3
|
Huang Y, Zhang T, Zhang S, Zhang W, Yang L, Zhu D, Liu T, Jiang X, Han J, Guo L. Genetic Influence on Gyral Peaks. Neuroimage 2023; 280:120344. [PMID: 37619794 DOI: 10.1016/j.neuroimage.2023.120344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic mechanisms have been hypothesized to be a major determinant in the formation of cortical folding. Although there is an increasing number of studies examining the heritability of cortical folding, most of them focus on sulcal pits rather than gyral peaks. Gyral peaks, which reflect the highest local foci on gyri and are consistent across individuals, remain unstudied in terms of heritability. To address this knowledge gap, we used high-resolution data from the Human Connectome Project (HCP) to perform classical twin analysis and estimate the heritability of gyral peaks across various brain regions. Our results showed that the heritability of gyral peaks was heterogeneous across different cortical regions, but relatively symmetric between hemispheres. We also found that pits and peaks are different in a variety of anatomic and functional measures. Further, we explored the relationship between the levels of heritability and the formation of cortical folding by utilizing the evolutionary timeline of gyrification. Our findings indicate that the heritability estimates of both gyral peaks and sulcal pits decrease linearly with the evolution timeline of gyrification. This suggests that the cortical folds which formed earlier during gyrification are subject to stronger genetic influences than the later ones. Moreover, the pits and peaks coupled by their time of appearance are also positively correlated in respect of their heritability estimates. These results fill the knowledge gap regarding genetic influences on gyral peaks and significantly advance our understanding of how genetic factors shape the formation of cortical folding. The comparison between peaks and pits suggests that peaks are not a simple morphological mirror of pits but could help complete the understanding of folding patterns.
Collapse
Affiliation(s)
- Ying Huang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China; School of Information and Technology, Northwest University, Xi'an 710127, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Li Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Dajiang Zhu
- Computer Science & Engineering, University of Texas at Arlington, TX 76010, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Xi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
4
|
Wu J, Tang C. Correspondence: A combination of sectional micro-anatomy and micro-stereoscopic anatomy is an improved micro-dissection method. J Anat 2022; 241:191-192. [PMID: 35128655 PMCID: PMC9178384 DOI: 10.1111/joa.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
It is easy to make errors in estimating the exact size and positioning of neural structures, especially when only using tomographic methods, as a lot of imagination and little precision is required. We found that combining the use of sectional micro-anatomy and micro-stereoscopic anatomy is much more accurate. We believe that our study makes a significant contribution to the literature because we believe that using improved methods to examine the neural structure is vital in future research on the micro-stereoscopic anatomy of the brain.
Collapse
Affiliation(s)
- Jing‐Zhan Wu
- Department of NeurosurgeryThe Second Affiliated Hospital of GUANGXI Medical UniversityNanNingChina
| | - Chun‐Hai Tang
- Department of NeurosurgeryThe Second Affiliated Hospital of GUANGXI Medical UniversityNanNingChina
| |
Collapse
|
5
|
Wu J, Zhou M, Qin K, Liao S, Tang C, Ruan Y, Hu X, Long F, Mo K, Kuang H, Deng R. Microscopic anatomical atlas study on the lateral ventricles of the rabbit cerebrum and its related structures. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
6
|
Nuñez M, Guillotte A, Faraji AH, Deng H, Goldschmidt E. Blood supply to the corticospinal tract: A pictorial review with application to cranial surgery and stroke. Clin Anat 2021; 34:1224-1232. [PMID: 34478213 DOI: 10.1002/ca.23782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
The corticospinal tract (CST) is the main neural pathway responsible for conducting voluntary motor function in the central nervous system. The CST condenses into fiber bundles as it descends from the frontoparietal cortex, traveling down to terminate at the anterior horn of the spinal cord. The CST is at risk of injury from vascular insult from strokes and during neurosurgical procedures. The aim of this article is to identify and describe the vasculature associated with the CST from the cortex to the medulla. Dissection of cadaveric specimens was carried out in a manner, which exposed and preserved the fiber tracts of the CST, as well as the arterial systems that supply them. At the level of the motor cortex, the CST is supplied by terminal branches of the anterior cerebral artery and middle cerebral artery. The white matter tracts of the corona radiata and internal capsule are supplied by small perforators including the lenticulostriate arteries and branches of the anterior choroidal artery. In the brainstem, the CST is supplied by anterior perforating branches from the basilar and vertebral arteries. The caudal portions of the CST in the medulla are supplied by the anterior spinal artery, which branches from the vertebral arteries. The non-anastomotic nature of the vessel systems of the CST highlights the importance of their preservation during neurosurgical procedures. Anatomical knowledge of the CST is paramount to clinical diagnosis and treatment of heterogeneity of neurodegenerative, neuroinflammatory, cerebrovascular, and skull base tumors.
Collapse
Affiliation(s)
- Maximilano Nuñez
- Hospital El Cruce, Buenos Aires University Medical School, Florencio Varela, Argentina
| | - Andrew Guillotte
- University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist, Houston, Texas, USA
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ezequiel Goldschmidt
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Shalom DE, Trevisan MA, Mallela A, Nuñez M, Goldschmidt E. Brain folding shapes the branching pattern of the middle cerebral artery. PLoS One 2021; 16:e0245167. [PMID: 33411825 PMCID: PMC7790398 DOI: 10.1371/journal.pone.0245167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
The folds of the brain offer a particular challenge for the subarachnoid vascular grid. The primitive blood vessels that occupy this space, when the brain is flat, have to adapt to an everchanging geometry while constructing an efficient network. Surprisingly, the result is a non-redundant arterial system easily challenged by acute occlusions. Here, we generalize the optimal network building principles of a flat surface growing into a folded configuration and generate an ideal middle cerebral artery (MCA) configuration that can be directly compared with the normal brain anatomy. We then describe how the Sylvian fissure (the fold in which the MCA is buried) is formed during development and use our findings to account for the differences between the ideal and the actual shaping pattern of the MCA. Our results reveal that folding dynamics condition the development of arterial anastomosis yielding a network without loops and poor response to acute occlusions.
Collapse
Affiliation(s)
- Diego E. Shalom
- Physics Institute of Buenos Aires (IFIBA) CONICET, Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Marcos A. Trevisan
- Physics Institute of Buenos Aires (IFIBA) CONICET, Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Arka Mallela
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Maximiliano Nuñez
- Department of Neurosurgery, El Cruce Hospital, Provincia de Buenos Aires, Argentina
| | - Ezequiel Goldschmidt
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Bush A, Nuñez M, Brisbin AK, Friedlander RM, Goldschmidt E. Spatial convergence of distant cortical regions during folding explains why arteries do not cross the sylvian fissure. J Neurosurg 2020; 133:1960-1969. [PMID: 31756705 DOI: 10.3171/2019.9.jns192151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cortical folding places regions that are separated by a large distance along the cortical surface in close proximity. This process is not homogeneous; regions such as the insular opercula have a much higher cortical surface distance (CSD) to euclidean distance (ED) than others. Here the authors explore the hypothesis that in the folded brain the CSD, and not the ED, determines regions of common irrigation, because this measure corresponds more closely with the distance along the prefolded brain, where the subarachnoid arterial vascular network starts forming. METHODS The authors defined a convergence index that compared the ED to the CSD and applied it to the cortical surface reconstruction of an average brain. They then compared cortical convergence to the irrigation patterns of major sulci and fissures of the brain, by assessing whether these structures were crossed or not crossed by arterial vessels in 20 fixed hemispheres. RESULTS The regions of highest convergence (top 1%) were clustered around the sylvian fissure, which is the only brain depression with high convergence values along its edges. Arterial crossings were commonly observed in every major sulcus of the brain, with the exception of the sylvian fissure, constituting a highly significant difference (p < 10-4). CONCLUSIONS Arteries do not cross regions of high convergence. In the adult brain the CSD, rather than the ED, predicts the regional irrigation pattern. The distant origin of the frontal and temporal lobes creates a region of high cortical convergence, which explains why arteries do not cross the sylvian fissure.
Collapse
Affiliation(s)
- Alan Bush
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- 2Department of Physics, FCEN, University of Buenos Aires and IFIBA-CONICET, Buenos Aires, Argentina
| | - Maximiliano Nuñez
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- 3Department of Neurosurgery, Hospital El Cruce, Florencio Varela, Provincia de Buenos Aires, Argentina; and
| | - Alyssa K Brisbin
- 4University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Robert M Friedlander
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ezequiel Goldschmidt
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Oberman DZ, Rabelo NN, Correa JLA, Ajler P. Relationship of superior sagittal sinus with sagittal midline: A surgical application. Surg Neurol Int 2020; 11:309. [PMID: 33093986 PMCID: PMC7568091 DOI: 10.25259/sni_509_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
Background: Interhemispheric approach is widely used to surgical management of midline tumors and vascular lesion in and around the third ventricle. Complete exposure of the superior sagittal sinus to obtain adequate working space of midline lesion is difficult, because of the risk to inadvertent injury to the sinus and bridging veins, which may cause several neurological deficits. Understanding the SSS neuroanatomy and its relationships with external surgical landmarks avoid such complications. The objective of this study is to accurately describe the position of SSS and its displacement in relation with sagittal midline by magnetic resonance imaging. Methods: A retrospective cross-sectional, observational study was performed. Magnetic resonance image of 76 adult patients with no pathological imaging was analyzed. The position of the halfway between nasion and bregma, bregma, halfway between bregma and lambda, and lambda was performed. The width and the displacement of the superior sagittal sinus accordingly to the sagittal midline were assessed in those landmarks. Results: The mean width of superior sagittal sinus at halfway between nasion and bregma, bregma, halfway between bregma and lambda, and lambda was 5.62 ± 2.5, 6.5 ± 2.8, 7.4 ± 3.2, and 8.5 ± 2.1 mm, respectively, without gender discrepancy. The mean displacement according to the midline at those landmarks showed a statistically significant difference to the right side among sexes. Conclusion: In this study, we demonstrate that sagittal midline may approximate external location of the superior sagittal sinus. Our data showed that in the majority of the cases, the superior sagittal sinus is displaced to the right side of sagittal midline as far as 16.3 mm. The data we obtained provide useful information that suggest that neurosurgeons should use safety margin to perform burr holes and drillings at the sagittal midline.
Collapse
Affiliation(s)
| | | | | | - Pablo Ajler
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Abstract
While it is well established that cortical morphology differs in relation to a variety of inter-individual factors, it is often characterized using estimates of volume, thickness, surface area, or gyrification. Here we developed a computational approach for estimating sulcal width and depth that relies on cortical surface reconstructions output by FreeSurfer. While other approaches for estimating sulcal morphology exist, studies often require the use of multiple brain morphology programs that have been shown to differ in their approaches to localize sulcal landmarks, yielding morphological estimates based on inconsistent boundaries. To demonstrate the approach, sulcal morphology was estimated in three large sample of adults across the lifespan, in relation to aging. A fourth sample is additionally used to estimate test–retest reliability of the approach. This toolbox is now made freely available as supplemental to this paper: https://cmadan.github.io/calcSulc/.
Collapse
|
11
|
Monroy-Sosa A, Jennings J, Chakravarthi S, Fukui MB, Celix J, Kojis N, Lindsay M, Walia S, Rovin R, Kassam A. Microsurgical Anatomy of the Vertical Rami of the Superior Longitudinal Fasciculus: An Intraparietal Sulcus Dissection Study. Oper Neurosurg (Hagerstown) 2018; 16:226-238. [DOI: 10.1093/ons/opy077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/14/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
A number of vertical prolongations of the superior longitudinal fasciculus, which we refer to as the vertical rami (Vr), arise at the level of the supramarginal gyrus, directed vertically toward the parietal lobe.
OBJECTIVE
To provide the first published complete description of the white matter tracts (WMT) of the Vr, their relationship to the intraparietal and parieto-occipital sulci (IPS-POS complex), and their importance in neurosurgical approaches to the parietal lobe.
METHODS
Subcortical dissections of the Vr and WMT of the IPS were performed. Findings were correlated with a virtual dissection using high-resolution diffusion tensor imaging (DTI) tractography data derived from the Human Connectome Project. Example planning of a transparietal, transsulcal operative corridor is demonstrated using an integrated neuronavigation and optical platform.
RESULTS
The Vr were shown to contain component fibers of the superior longitudinal fasciculus (SLF)-II and SLF-III, with contributions from the middle longitudinal fasciculus merging into the medial bank of the IPS. The anatomic findings correlated well with DTI tractography. The line extending from the lateral extent of the POS to the IPS marks an ideal sulcal entry point that we have termed the IPS-POS Kassam-Monroy (KM) Point, which can be used to permit a safe parafascicular surgical trajectory to the trigone.
CONCLUSION
The Vr are a newly conceptualized group of tracts merging along the banks of the IPS, mediating connectivity between the parietal lobe and dorsal stream/SLF. We suggest a refined surgical trajectory to the ventricular atrium utilizing the posterior third of the IPS, at or posterior to the IPS-POS Point, in order to mitigate risk to the Vr and its considerable potential for postsurgical morbidity.
Collapse
Affiliation(s)
- Alejandro Monroy-Sosa
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Jonathan Jennings
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Srikant Chakravarthi
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Melanie B Fukui
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Juanita Celix
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Nathaniel Kojis
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | | | - Sarika Walia
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Richard Rovin
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Amin Kassam
- Aurora Neuroscience Innovation Insti-tute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Spiriev T, Nakov V, Laleva L, Tzekov C. OsiriX software as a preoperative planning tool in cranial neurosurgery: A step-by-step guide for neurosurgical residents. Surg Neurol Int 2017; 8:241. [PMID: 29119039 PMCID: PMC5655755 DOI: 10.4103/sni.sni_419_16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
Background: OsiriX (Pixmeo, Switzerland) is an open-source Digital Imaging and Communications in Medicine (DICOM) viewer that is gaining more and more attention in the neurosurgical community because of its user-friendly interface, powerful three-dimensional (3D) volumetric rendering capabilities, and various options for data integration. This paper presents in detail the use of OsiriX software as a preoperative planning tool in cranial neurosurgery. Methods: In January 2013, OsiriX software was introduced into our clinical practice as a preoperative planning tool. Its capabilities are being evaluated on an ongoing basis in routine elective cranial cases. Results: The program has proven to be highly effective at volumetrically representing data from radiological examinations in 3D. Among its benefits in preoperative planning are simulating the position and exact location of the lesion in 3D, tailoring the skin incision and craniotomy bone flap, enhancing the representation of normal and pathological anatomy, and aiding in planning the reconstruction of the affected area. Conclusion: OsiriX is a useful tool for preoperative planning and visualization in neurosurgery. The software greatly facilitates the surgeon's understanding of the relationship between normal and pathological anatomy and can be used as a teaching tool.
Collapse
Affiliation(s)
- Toma Spiriev
- Department of Neurosurgery, Tokuda Hospital, Sofia, Bulgaria
| | - Vladimir Nakov
- Department of Neurosurgery, Tokuda Hospital, Sofia, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Tokuda Hospital, Sofia, Bulgaria
| | - Christo Tzekov
- Department of Neurosurgery, Tokuda Hospital, Sofia, Bulgaria
| |
Collapse
|
13
|
Silva SM, Cunha-Cabral D, Andrade JP. Neurosurgical relevance of the dissection of the diencephalic white matter tracts using the Klingler technique. Clin Neurol Neurosurg 2017; 156:35-40. [DOI: 10.1016/j.clineuro.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
|
14
|
Ghinda CD, Duffau H. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas. Front Surg 2017; 4:3. [PMID: 28197403 PMCID: PMC5281570 DOI: 10.3389/fsurg.2017.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.
Collapse
Affiliation(s)
- Cristina Diana Ghinda
- Department of Neurosurgery, The Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Neuroscience Division, University of Ottawa, Ottawa, ON, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France; Brain Plasticity, Stem Cells and Glial Tumors Team, National Institute for Health and Medical Research (INSERM), Montpellier, France
| |
Collapse
|
15
|
Abstract
This brief history of topographical anatomy begins with Egyptian medical papyri and the works known collectively as the Greco-Arabian canon, the time line then moves on to the excitement of discovery that characterised the Renaissance, the increasing regulatory and legislative frameworks introduced in the 18th and 19th centuries, and ends with a consideration of the impact of technology that epitomises the period from the late 19th century to the present day. This paper is based on a lecture I gave at the Winter Meeting of the Anatomical Society in Cambridge in December 2015, when I was awarded the Anatomical Society Medal.
Collapse
|