1
|
Wang L, Nie R, Yu Z, Xin R, Zheng C, Zhang Z, Zhang J, Cai J. An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00244-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Armstrong CWL, Bosio E, Neil C, Brown SGA, Hankey GJ, Fatovich DM. Distinct inflammatory responses differentiate cerebral infarct from transient ischaemic attack. J Clin Neurosci 2016; 35:97-103. [PMID: 27697435 DOI: 10.1016/j.jocn.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/28/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Abstract
We previously reported on a 26-year-old patient who presented early during a large and eventually fatal cerebral infarct. Microarray analysis of blood samples from this patient demonstrated initially up-regulated and subsequently down-regulated Granzyme B (GzmB) expression, along with progressive up-regulation of genes for S100 calcium binding protein A12 (S100A12) and matrix metalloproteinase 9 (MMP-9). To confirm these findings, we investigated these parameters in patients with suspected stroke presenting within 6h of symptom onset to a single centre. Blood samples were taken at enrolment, then 1h, 3h and 24h post-enrolment for the examination of cellular, protein and genetic changes. Patients with subsequently confirmed ischaemic (n=18) or haemorrhagic stroke (n=11) showed increased intracellular concentrations of GzmB in all cell populations investigated (CD8+, CD8- and Natural Killer [NK] cells). Infarct patients, however, demonstrated significantly reduced GzmB gene expression and increased circulating MMP-9 and S100A12 levels in contrast to transient ischaemic attack (TIA) patients or healthy controls. Furthermore, a pronounced neutrophilia was noted in the infarct and haemorrhage groups, while TIA patients (n=9) reflected healthy controls (n=10). These findings suggest a spectrum of immune response during stroke. TIA showed few immunological changes in comparison to infarct and haemorrhage, which demonstrated inhibition of GzmB production and a rise in neutrophil numbers and neutrophil-associated mediators. This implies a greater role of the innate immune system. These markers may provide novel targets for inhibition and reduction of secondary injury.
Collapse
Affiliation(s)
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Level 6 MRF Building, 50 Murray St., Perth, WA 6000, Australia; Emergency Medicine, University of Western Australia, Perth, WA, Australia.
| | - Claire Neil
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Level 6 MRF Building, 50 Murray St., Perth, WA 6000, Australia; Emergency Medicine, University of Western Australia, Perth, WA, Australia
| | - Simon G A Brown
- Dept. of Emergency Medicine, Royal Perth Hospital, Perth, WA, Australia; Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Level 6 MRF Building, 50 Murray St., Perth, WA 6000, Australia; Emergency Medicine, University of Western Australia, Perth, WA, Australia
| | - Graeme J Hankey
- School of Medicine and Pharmacology, The University of Western Australia; Department of Neurology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Daniel M Fatovich
- Dept. of Emergency Medicine, Royal Perth Hospital, Perth, WA, Australia; Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Level 6 MRF Building, 50 Murray St., Perth, WA 6000, Australia; Emergency Medicine, University of Western Australia, Perth, WA, Australia
| |
Collapse
|