1
|
Russomanno P, Zizza P, Cerofolini L, D'Aria F, Iachettini S, Di Vito S, Biroccio A, Amato J, Fragai M, Pagano B. Expanding the Functions of KHSRP Protein: Insights into DNA G-Quadruplex Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410086. [PMID: 39763191 PMCID: PMC11848572 DOI: 10.1002/advs.202410086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Indexed: 02/25/2025]
Abstract
KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells. Therefore, the recognition of G4s by specific proteins is crucial for modulating physiological and pathological pathways. Given the growing interest in DNA G4s, a deeper understanding of the proteins that interact with them and their molecular recognition is imperative. This study demonstrates that KHSRP binds to these DNA structures. Biophysical analyses provide insights into the thermodynamics, kinetics, and structural aspects of these interactions, showing that G4 structural variability significantly influences KHSRP binding, in which the KH3 protein domain plays a key role. Validation of these interactions in cancer cells further highlights their biological relevance. Notably, the G4 ligand pyridostatin affects KHSRP/G4 interactions both in vitro and in cells, suggesting that small molecules can modulate this molecular recognition. These findings underscore KHSRP's potential role in regulating cellular mechanisms through binding to G4-forming DNA, positioning it as a possible therapeutic target in cancer.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Pasquale Zizza
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Linda Cerofolini
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Federica D'Aria
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Sara Iachettini
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Serena Di Vito
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Annamaria Biroccio
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Marco Fragai
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| |
Collapse
|
2
|
Ali F, Iqbal A, Azhar I, Qayyum A, Hassan SA, Hasan MSA, Jawi M, Hassan HM, Al-Emam A, Sajid M. Exploring a novel four-gene system as a diagnostic and prognostic biomarker for triple-negative breast cancer, using clinical variables. Comput Biol Chem 2024; 113:108247. [PMID: 39427606 DOI: 10.1016/j.compbiolchem.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis. This research aims to find real hub genes for prognostic biomarkers of TNBC therapy. The GEO datasets GSE27447 and GSE233242 were analyzed using R package limma to explore DEGs. The PPI was generated using the STRING database. Cytoscape software plug-ins were used to screen the hub genes. Using the DAVID database, GO functional enrichment and KEGG pathway enrichment analysis were performed. Different online expression databases were employed to investigate the functions of real hub genes in tumor driving, diagnosis, and prognosis in TNBC patients with various clinicopathologic characteristics. A total of one hundred DEGs were identified between both datasets. The seven hub genes were identified after the topological parameter analysis of the PPI network. The KEGG pathway and GO analysis suggest that four genes (PSMB1, PSMC1, PSMF1, and PSMD8) are highly enriched in proteasome and were finally considered as real hub genes. Additionally, the expression analysis demonstrated that hub genes were notably up-regulated in TNBC patients compared to controls. Furthermore, correlational analyses revealed the positive and negative correlations among the expression of the real hub genes and various ancillary data, including tumor purity, promoter methylation status, overall survival (OS), genetic alterations, infiltration of CD8+ T and CD4+ immune cells, and a few more, across TNBC samples. Finally, our analysis identified a couple of significant chemotherapeutic drugs, miRNAs and transcription factors (TFS) with intriguing curative potential. In conclusion, we identified four real hub genes as novel biomarkers to overcome heterogenetic-particular challenges in diagnosis, prognosis, and therapy for TNBC patients.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Azhar Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Iqra Azhar
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Adiba Qayyum
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Syed Ali Hassan
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science And Technology University, Gopalgonj, Dhaka 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh.
| | - Motasim Jawi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
3
|
Tian X, Gu L, Zeng F, Liu X, Zhou Y, Dou Y, Han J, Zhao Y, Zhang Y, Luo Q, Wang F. Strophanthidin Induces Apoptosis of Human Lung Adenocarcinoma Cells by Promoting TRAIL-DR5 Signaling. Molecules 2024; 29:877. [PMID: 38398629 PMCID: PMC10892344 DOI: 10.3390/molecules29040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.
Collapse
Affiliation(s)
- Xiao Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangang Zeng
- School of Environment of Natural Resources, Remin University of China, Beijing 100875, China;
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Han H, Feng X, Guo Y, Cheng M, Cui Z, Guo S, Zhou W. Identification of potential target genes of breast cancer in response to Chidamide treatment. Front Mol Biosci 2022; 9:999582. [PMID: 36425653 PMCID: PMC9679413 DOI: 10.3389/fmolb.2022.999582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Chidamide, a new chemically structured HDACi-like drug, has been shown to inhibit breast cancer, but its specific mechanism has not been fully elucidated. In this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-seq technique to analyze the gene expression differences of Chidamide-treated breast cancer cells to identify the drug targets of Chidamide's anti-breast cancer effect and to lay the foundation for the development of new drugs for breast cancer treatment. The results showed that the MCF-7 CHID group expressed 320 up-regulated genes and 222 down-regulated genes compared to the control group; Gene Ontology functional enrichment analysis showed that most genes were enriched to biological processes. Subsequently, 10 hub genes for Chidamide treatment of breast cancer were identified based on high scores using CytoHubba, a plug-in for Cytoscape: TP53, JUN, CAD, ACLY, IL-6, peroxisome proliferator-activated receptor gamma, THBS1, CXCL8, IMPDH2, and YARS. Finally, a combination of the Gene Expression Profiling Interactive Analysis database and Kaplan Meier mapper to compare the expression and survival analysis of these 10 hub genes, TP53, ACLY, PPARG, and JUN were found to be potential candidate genes significantly associated with Chidamide for breast cancer treatment. Among them, TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. Therefore, we identified four genes central to the treatment of breast cancer with Chidamide by bioinformatics analysis, and clarified that TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. This study lays a solid experimental and theoretical foundation for the treatment of breast cancer at the molecular level with Chidamide and for the combination of Chidamide.
Collapse
Affiliation(s)
- Han Han
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Meijia Cheng
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
5
|
Taylor MF, Black MA, Hampton MB, Ledgerwood EC. Insights into H 2O 2-induced signaling in Jurkat cells from analysis of gene expression. Free Radic Res 2022; 56:666-676. [PMID: 36630571 DOI: 10.1080/10715762.2023.2165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous oxidant produced in a regulated manner by various enzymes in mammalian cells. H2O2 reversibly oxidizes thiol groups of cysteine residues to mediate intracellular signaling. While examples of H2O2-dependent signaling have been reported, the exact molecular mechanism(s) of signaling and the pathways affected are not well understood. Here, the transcriptomic response of Jurkat T cells to H2O2 was investigated to determine global effects on gene expression. With a low H2O2 concentration (10 µM) that did not induce an oxidative stress response or cell death, extensive changes in gene expression occurred after 4 h (6803 differentially expressed genes). Of the genes with a greater then 2-fold change in expression, 85% were upregulated suggesting that in a physiological setting H2O2 predominantly activates gene expression. Pathway analysis identified gene expression signatures associated with FOXO and NTRK signaling. These signatures were associated with an overlapping set of transcriptional regulators. Overall, our results provide a snapshot of gene expression changes in response to H2O2, which, along with further studies, will lead to new insights into the specific pathways that are activated in response to endogenous production of H2O2, and the molecular mechanisms of H2O2 signaling.
Collapse
Affiliation(s)
- Megan F Taylor
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand
| | - Elizabeth C Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
7
|
Kao TJ, Wu CC, Phan NN, Liu YH, Ta HDK, Anuraga G, Wu YF, Lee KH, Chuang JY, Wang CY. Prognoses and genomic analyses of proteasome 26S subunit, ATPase (PSMC) family genes in clinical breast cancer. Aging (Albany NY) 2021; 13:17970. [PMID: 34329194 PMCID: PMC8351721 DOI: 10.18632/aging.203345] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is a complex disease, and several processes are involved in its development. Therefore, potential therapeutic targets need to be discovered for these patients. Proteasome 26S subunit, ATPase gene (PSMC) family members are well reported to be involved in protein degradation. However, their roles in breast cancer are still unknown and need to be comprehensively researched. Leveraging publicly available databases, such as cBioPortal and Oncomine, for high-throughput transcriptomic profiling to provide evidence-based targets for breast cancer is a rapid and robust approach. By integrating the aforementioned databases with the Kaplan–Meier plotter database, we investigated potential roles of six PSMC family members in breast cancer at the messenger RNA level and their correlations with patient survival. The present findings showed significantly higher expression profiles of PSMC2, PSMC3, PSMC4, PSMC5, and PSMC6 in breast cancer compared to normal breast tissues. Besides, positive correlations were also revealed between PSMC family genes and ubiquinone metabolism, cell cycle, and cytoskeletal remodeling. Meanwhile, we discovered that high levels of PSMC1, PSMC3, PSMC4, PSMC5, and PSMC6 transcripts were positively correlated with poor survival, which likely shows their importance in breast cancer development. Collectively, PSMC family members have the potential to be novel and essential prognostic biomarkers for breast cancer development.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh 700000, Vietnam
| | - Yen-Hsi Liu
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya, East Java 60234, Indonesia
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|