1
|
Lucas A, Mouchtaris S, Tranquille A, Sinha N, Gallagher R, Mojena M, Stein JM, Das S, Davis KA. Mapping hippocampal and thalamic atrophy in epilepsy: A 7-T magnetic resonance imaging study. Epilepsia 2024; 65:1092-1106. [PMID: 38345348 DOI: 10.1111/epi.17908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley Tranquille
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Gallagher
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa Mojena
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Tung H, Tsai SC, Huang PR, Hsieh PF, Lin YC, Peng SJ. Morphological and metabolic asymmetries of the thalamic subregions in temporal lobe epilepsy predict cognitive functions. Sci Rep 2023; 13:22611. [PMID: 38114641 PMCID: PMC10730825 DOI: 10.1038/s41598-023-49856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Both morphological and metabolic imaging were used to determine how asymmetrical changes of thalamic subregions are involved in cognition in temporal lobe epilepsy (TLE). We retrospectively recruited 24 left-TLE and 15 right-TLE patients. Six thalamic subnuclei were segmented by magnetic resonance imaging, and then co-registered onto Positron emission tomography images. We calculated the asymmetrical indexes of the volumes and normalized standard uptake value ratio (SUVR) of the entire and individual thalamic subnuclei. The SUVR of ipsilateral subnuclei were extensively and prominently decreased compared with the volume loss. The posterior and medial subnuclei had persistently lower SUVR in both TLE cases. Processing speed is the cognitive function most related to the metabolic asymmetry. It negatively correlated with the metabolic asymmetrical indexes of subregions in left-TLE, while positively correlated with the subnuclei volume asymmetrical indexes in right-TLE. Epilepsy duration negatively correlated with the volume asymmetry of most thalamic subregions in left-TLE and the SUVR asymmetry of ventral and intralaminar subnuclei in right-TLE. Preserved metabolic activity of contralateral thalamic subregions is the key to maintain the processing speed in both TLEs. R-TLE had relatively preserved volume of the ipsilateral thalamic volume, while L-TLE had relatively decline of volume and metabolism in posterior subnucleus.
Collapse
Affiliation(s)
- Hsin Tung
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Pu-Rong Huang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Peiyuan F Hsieh
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ching Lin
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Lee DA, Lee H, Kim SE, Park KM. Brain networks and epilepsy development in patients with Alzheimer disease. Brain Behav 2023; 13:e3152. [PMID: 37416994 PMCID: PMC10454249 DOI: 10.1002/brb3.3152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the association between brain networks and epilepsy development in patients with Alzheimer disease (AD). METHODS We enrolled patients newly diagnosed with AD at our hospital who underwent three-dimensional T1-weighted magnetic resonance imaging at the time of AD diagnosis and included healthy controls. We obtained the cortical, subcortical, and thalamic nuclei structural volumes using FreeSurfer and applied graph theory to obtain the global brain network and intrinsic thalamic network based on the structural volumes using BRAPH. RESULTS We enrolled 25 and 56 patients with AD with and without epilepsy development, respectively. We also included 45 healthy controls. The global brain network differed between the patients with AD and healthy controls. The local efficiency (2.026 vs. 3.185, p = .048) and mean clustering coefficient (0.449 vs. 1.321, p = .024) were lower, whereas the characteristic path length (0.449 vs. 1.321, p = .048) was higher in patients with AD than in healthy controls. Both global and intrinsic thalamic networks were significantly different between AD patients with and without epilepsy development. In the global brain network, local efficiency (1.340 vs. 2.401, p = .045), mean clustering coefficient (0.314 vs. 0.491, p = .045), average degree (27.442 vs. 41.173, p = .045), and assortative coefficient (-0.041 vs. -0.011, p = .045) were lower, whereas the characteristic path length (2.930 vs. 2.118, p = .045) was higher in patients with AD with epilepsy development than in those without. In the intrinsic thalamic network, the mean clustering coefficient (0.646 vs. 0.460, p = .048) was higher, whereas the characteristic path length (1.645 vs. 2.232, p = .048) was lower in patients with AD with epilepsy development than in those without. CONCLUSION We found that the global brain network differs between patients with AD and healthy controls. In addition, we demonstrated significant associations between brain networks (both global brain and intrinsic thalamic networks) and epilepsy development in patients with AD.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Ho‐Joon Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Si Eun Kim
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
4
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical functional connectivity gradients in temporal lobe epilepsy. Neuroimage Clin 2023; 38:103418. [PMID: 37187042 PMCID: PMC10196948 DOI: 10.1016/j.nicl.2023.103418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND MOTIVATION Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. METHODS In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 24 R-TLE patients and 31 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. RESULTS We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. CONCLUSION Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, United States; Department of Bioengineering, University of Pennsylvania, United States.
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, United States
| | - Eli J Cornblath
- Department of Neurology, University of Pennsylvania, United States
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, United States
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, United States
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, United States
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, United States
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, United States
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, United States
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, United States
| |
Collapse
|
5
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical Functional Connectivity Gradients in Temporal Lobe Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.08.23284313. [PMID: 36711498 PMCID: PMC9882434 DOI: 10.1101/2023.01.08.23284313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Motivation Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. Methods In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 23 R-TLE patients and 32 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. Results We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. Conclusion Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | | | | | | | | | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital
| | | | | | - Joel M Stein
- Department of Radiology, University of Pennsylvania
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
- Department of Neurology, Massachusetts General Hospital
- Department of Radiology, University of Pennsylvania
| |
Collapse
|
6
|
Ierusalimsky NV, Karimova ED, Samotaeva IS, Luzin RV, Zinchuk MS, Rider FK, Guekht AB. [Structural brain changes in patients with temporal lobe epilepsy and comorbid depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:83-89. [PMID: 37796072 DOI: 10.17116/jnevro202312309183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To assess the morphological features of the brain structures in patients with temporal lobe epilepsy and comorbid depression. MATERIAL AND METHODS From 1 January 2017 to 31 December 2020, we studied 80 patients with temporal lobe epilepsy (aged 18-60 years, 38 of whom had comorbid depression) and 48 healthy subjects of comparable age. Magnetic resonance imaging (MRI) of the brain was performed using the epilepsy protocol in a scanner with a magnetic field strength of 1.5 T. Focal temporal lobe epilepsy was diagnosed by neurologists (epileptologists) specialising in epilepsy according to the International League Against Epilepsy (ILAE) classification of epilepsy. Psychiatrists assessed the presence and severity of depressive disorders by clinical interview and by participants' scores on the Beck Depression Inventory (BDI-II). MRI data were processed using FreeSurfer 6.0 software to determine volumes of subcortical structures and thicknesses of cortical structures. At the group level, analysis of covariance with Holm-Bonferroni correction was used as the statistical method. RESULTS Morphometric analysis revealed a significant decrease in the volume of the thalamus bilaterally and the brain stem and an increase in the volume of the choroid plexus in the left hemisphere, as well as a significant decrease in the thickness of the entorhinal cortex, temporal pole and isthmus of the cingulate gyrus in the left hemisphere and middle temporal gyrus and inferior temporal gyrus in the right hemisphere in patients with epilepsy compared to healthy controls. No association was found between the presence of depression and significant structural changes on MRI. CONCLUSION The data obtained suggest an effect of temporal lobe epilepsy, but not comorbid depression, on the morphology of brain structures.
Collapse
Affiliation(s)
- N V Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - E D Karimova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - I S Samotaeva
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - R V Luzin
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - M S Zinchuk
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - F K Rider
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - A B Guekht
- Scientific and Practical Psychoneurological Center, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
7
|
Sarbisheh I, Tapak L, Fallahi A, Fardmal J, Sadeghifar M, Nazemzadeh M, Mehvari Habibabadi J. Cortical thickness analysis in temporal lobe epilepsy using fully Bayesian spectral method in magnetic resonance imaging. BMC Med Imaging 2022; 22:222. [PMID: 36544100 PMCID: PMC9768883 DOI: 10.1186/s12880-022-00949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is the most common type of epilepsy associated with changes in the cerebral cortex throughout the brain. Magnetic resonance imaging (MRI) is widely used for detecting such anomalies; nevertheless, it produces spatially correlated data that cannot be considered by the usual statistical models. This study aimed to compare cortical thicknesses between patients with TLE and healthy controls by considering the spatial dependencies across different regions of the cerebral cortex in MRI. METHODS In this study, T1-weighted MRI was performed on 20 healthy controls and 33 TLE patients. Nineteen patients had a left TLE and 14 had a right TLE. Cortical thickness was measured for all individuals in 68 regions of the cerebral cortex based on images. Fully Bayesian spectral method was utilized to compare the cortical thickness of different brain regions between groups. Neural networks model was used to classify the patients using the identified regions. RESULTS For the left TLE patients, cortical thinning was observed in bilateral caudal anterior cingulate, lateral orbitofrontal (ipsilateral), the bilateral rostral anterior cingulate, frontal pole and temporal pole (ipsilateral), caudal middle frontal and rostral middle frontal (contralateral side). For the right TLE patients, cortical thinning was only observed in the entorhinal area (ipsilateral). The AUCs of the neural networks for classification of left and right TLE patients versus healthy controls were 0.939 and 1.000, respectively. CONCLUSION Alteration of cortical gray matter thickness was evidenced as common effect of epileptogenicity, as manifested by the patients in this study using the fully Bayesian spectral method by taking into account the complex structure of the data.
Collapse
Affiliation(s)
- Iman Sarbisheh
- grid.411950.80000 0004 0611 9280Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- grid.411950.80000 0004 0611 9280Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Fallahi
- grid.411705.60000 0001 0166 0922Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Instruments Institute (AMTII), Tehran University of Medical Sciences, Tehran, Iran ,grid.459564.f0000 0004 0482 9174Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Javad Fardmal
- grid.411950.80000 0004 0611 9280Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Sadeghifar
- grid.411807.b0000 0000 9828 9578Department of Statistics, Faculty of Science, Bu-Ali Sina University, Hamadan, Iran
| | - MohammadReza Nazemzadeh
- grid.411705.60000 0001 0166 0922Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Instruments Institute (AMTII), Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Mehvari Habibabadi
- grid.411036.10000 0001 1498 685XDepartment of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Ballerini A, Tondelli M, Talami F, Molinari MA, Micalizzi E, Giovannini G, Turchi G, Malagoli M, Genovese M, Meletti S, Vaudano AE. Amygdala subnuclear volumes in temporal lobe epilepsy with hippocampal sclerosis and in non-lesional patients. Brain Commun 2022; 4:fcac225. [PMID: 36213310 PMCID: PMC9536297 DOI: 10.1093/braincomms/fcac225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Together with hippocampus, the amygdala is important in the epileptogenic network of patients with temporal lobe epilepsy. Recently, an increase in amygdala volumes (i.e. amygdala enlargement) has been proposed as morphological biomarker of a subtype of temporal lobe epilepsy patients without MRI abnormalities, although other data suggest that this finding might be unspecific and not exclusive to temporal lobe epilepsy. In these studies, the amygdala is treated as a single entity, while instead it is composed of different nuclei, each with peculiar function and connection. By adopting a recently developed methodology of amygdala's subnuclei parcellation based of high-resolution T1-weighted image, this study aims to map specific amygdalar subnuclei participation in temporal lobe epilepsy due to hippocampal sclerosis (n = 24) and non-lesional temporal lobe epilepsy (n = 24) with respect to patients with focal extratemporal lobe epilepsies (n = 20) and healthy controls (n = 30). The volumes of amygdala subnuclei were compared between groups adopting multivariate analyses of covariance and correlated with clinical variables. Additionally, a logistic regression analysis on the nuclei resulting statistically different across groups was performed. Compared with other populations, temporal lobe epilepsy with hippocampal sclerosis showed a significant atrophy of the whole amygdala (p Bonferroni = 0.040), particularly the basolateral complex (p Bonferroni = 0.033), while the non-lesional temporal lobe epilepsy group demonstrated an isolated hypertrophy of the medial nucleus (p Bonferroni = 0.012). In both scenarios, the involved amygdala was ipsilateral to the epileptic focus. The medial nucleus demonstrated a volume increase even in extratemporal lobe epilepsies although contralateral to the seizure onset hemisphere (p Bonferroni = 0.037). Non-lesional patients with psychiatric comorbidities showed a larger ipsilateral lateral nucleus compared with those without psychiatric disorders. This exploratory study corroborates the involvement of the amygdala in temporal lobe epilepsy, particularly in mesial temporal lobe epilepsy and suggests a different amygdala subnuclei engagement depending on the aetiology and lateralization of epilepsy. Furthermore, the logistic regression analysis indicated that the basolateral complex and the medial nucleus of amygdala can be helpful to differentiate temporal lobe epilepsy with hippocampal sclerosis and with MRI negative, respectively, versus controls with a consequent potential clinical yield. Finally, the present results contribute to the literature about the amygdala enlargement in temporal lobe epilepsy, suggesting that the increased volume of amygdala can be regarded as epilepsy-related structural changes common across different syndromes whose meaning should be clarified.
Collapse
Affiliation(s)
- Alice Ballerini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Francesca Talami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Elisa Micalizzi
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giada Giovannini
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giulia Turchi
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | | | | | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| |
Collapse
|
9
|
Verma G, Jacob Y, Jha M, Morris LS, Delman BN, Marcuse L, Fields M, Balchandani P. Quantification of brain age using high-resolution 7 tesla MR imaging and implications for patients with epilepsy. Epilepsy Behav Rep 2022; 18:100530. [PMID: 35492510 PMCID: PMC9043661 DOI: 10.1016/j.ebr.2022.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 10/27/2022] Open
Abstract
Purpose Epilepsy patients exhibit morphological differences on neuroimaging compared to age-matched healthy controls, including cortical and sub-cortical volume loss and altered gray-white matter ratios. The objective was to develop a model of normal aging using the 7T MRIs of healthy controls. This model can then be used to determine if the changes in epilepsy patients resemble the changes seen in aging, and potentially give a marker for the severity of those changes. Methods Sixty-nine healthy controls (24F/45M, mean age 36.5 ± 10.5 years) and forty-four epilepsy patients (24F/20M, 33.2 ± 9.9 years) non-lesional at 3T were scanned with volumetric T1-MPRAGE at 7T. These images were segmented and quantified using FreeSurfer. A linear regression-based model trained on healthy controls was developed to predict ages using derived imaging features among the epilepsy patient cohort. The model used 114 features with significant linear correlation with age. Results The regression-based model estimated brain age with mean absolute error (MAE) of 6.6 years among controls. Comparable prediction accuracy of 6.9 years MAE was seen epilepsy patients. T-test of mean absolute error showed no difference in the prediction accuracy with controls and epilepsy patients (p = 0.68). However, average signed error showed elevated (+5.0 years, p = 0.0007) predicted age differences (PAD; brain-PAD=, predicted minus biological age) among epilepsy patients. Morphological metrics in the medial temporal lobe were major contributors to PAD. Additionally, patients with seizure frequency greater than once a week showed significantly elevated brain-PAD (+8.2 ± 5.3 years, n = 13) compared to patients with lower seizure frequency (3.7 ± 6.5 years, n = 31, p = 0.033). Major conclusions Morphological patterns suggestive of premature aging were observed in non-lesional epilepsy patients vs. controls and in high seizure frequency patients vs. low frequency patients. Modeling brain age with 7T MRI may provide a sensitive imaging marker to assess the differential effects of the aging process in diseases such as epilepsy.
Collapse
Affiliation(s)
- Gaurav Verma
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yael Jacob
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Manish Jha
- UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Laurel S. Morris
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Bradley N. Delman
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Lara Marcuse
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Madeline Fields
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
10
|
Peng SJ, Hsieh KLC, Lin YK, Tsai ML, Wong TT, Chang H. Febrile seizures reduce hippocampal subfield volumes but not cortical thickness in children with focal onset seizures. Epilepsy Res 2022; 179:106848. [PMID: 34992023 DOI: 10.1016/j.eplepsyres.2021.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Whether febrile seizures (FS) produce long-term injury to the hippocampus or other brain structures is a critical question concerning focal onset seizures in children. Our aims are to evaluate the effect of FS on subfields of the hippocampus, thalamic nuclei, amygdala, cortical thickness, and surface area quantitatively in children with FS who later developed focal seizures and to identify biomarkers based on MRI structures. METHODS Children who had focal onset seizures with or without previous FS and normal 3-T MRI findings were included retrospectively. The MRI was performed within 2 years after the onset of focal seizures. Age-matched controls were also recruited. Hippocampal subfields and thalamic nuclei, amygdala volumes, cortical thickness, and cortical surface area in individual cortical regions were segmented by FreeSurfer version 7.1.1. Volumetric and morphometric data among children who had focal seizures with or without previous FS, as well as controls, were compared and correlated with clinical parameters. RESULTS Children with a history of FS who had focal seizures exhibited smaller right cornu ammonis (CA) 1 and right molecular cell layer of the hippocampus, compared to those without FS. A larger left hippocampal fissure was also found in FS with focal seizures compared to age-matched controls. There were no statistically significant differences in each nucleus of the thalamus, amygdala, cortical thickness, and surface area of each cortical region among the three groups. A smaller whole hippocampal volume was found for the right hippocampus in children with FS and focal seizures compared to those without FS. A trend of negative correlation was found between the frequency of FS and the left and right CA1 subfield volume ratios of the hippocampus. CONCLUSIONS We concluded that multiple episodes of FS may be associated with a trivial difference in volume reduction in the CA1 and molecular layer of the right hippocampus and an enlarged hippocampal fissure of the left hippocampus, but not with individual cortical thicknesses, surface area, thalamic nuclei, or amygdala in children with focal onset seizures.The hippocampal subfield CA1 and molecular layer of the right hippocampus may be more vulnerable than the cortices in children with focal seizures who experienced multiple FS episodes. This study highlights the minimal differences in brain volumes among children with recent onset focal seizures with or without FS history and controls, suggesting that the brain injurious aspects of the FS and recent onset focal seizures may have been previously overstated. This suggests that physicians can be reassuring about brain injury associated with these seizure types when discussing outcomes with parents and patients.
Collapse
Affiliation(s)
- Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kevin Li-Chun Hsieh
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Min-Lan Tsai
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Cho KH, Lee HJ, Heo K, Kim SE, Lee DA, Park KM. Intrinsic Thalamic Network in Temporal Lobe Epilepsy With Hippocampal Sclerosis According to Surgical Outcomes. Front Neurol 2021; 12:721610. [PMID: 34512532 PMCID: PMC8429827 DOI: 10.3389/fneur.2021.721610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background: The aim of this study was to identify the differences of intrinsic amygdala, hippocampal, or thalamic networks according to surgical outcomes in temporal lobe epilepsy (TLE) patients with hippocampal sclerosis (HS). Methods: We enrolled 69 pathologically confirmed TLE patients with HS. All patients had pre-operative three-dimensional T1-weighted MRI using a 3.0 T scanner. We obtained the structural volumes of the amygdala nuclei, hippocampal subfields, and thalamic nuclei. Then, we investigated the intrinsic networks based on volumes of these structures using structural covariance and graph theoretical analysis. Results: Of the 69 TLE patients with HS, 21 patients (42.1%) had poor surgical outcomes, whereas 40 patients (57.9%) had good surgical outcomes. The volumes in the amygdala nuclei, hippocampal subfields, and thalamic nuclei were not different according to surgical outcome. In addition, the intrinsic amygdala and hippocampal networks were not different between the patients with poor and good surgical outcomes. However, there was a significant difference in the intrinsic thalamic network in the ipsilateral hemisphere between them. The eccentricity and small-worldness index were significantly increased, whereas the characteristic path length was decreased in the patients with poor surgical outcomes compared to those with good surgical outcomes. Conclusion: We successfully demonstrated significant differences in the intrinsic thalamic network in the ipsilateral hemisphere between TLE patients with HS with poor and good surgical outcomes. This result suggests that the pre-operative intrinsic thalamic network can be related with surgical outcomes in TLE patients with HS.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
12
|
Jber M, Habibabadi JM, Sharifpour R, Marzbani H, Hassanpour M, Seyfi M, Mobarakeh NM, Keihani A, Hashemi-Fesharaki SS, Ay M, Nazem-Zadeh MR. Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. Neurol Sci 2021; 42:3305-3325. [PMID: 33389247 DOI: 10.1007/s10072-020-05003-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Advances in MRI acquisition and data processing have become important for revealing brain structural changes. Previous studies have reported widespread structural brain abnormalities and cortical thinning in patients with temporal lobe epilepsy (TLE), as the most common form of focal epilepsy. METHODS In this research, healthy control cases (n = 20) and patients with left TLE (n = 19) and right TLE (n = 14) were recruited, all underwent 3.0 T MRI with magnetization-prepared rapid gradient echo sequence to acquire T1-weighted images. Morphometric alterations in gray matter were identified using voxel-based morphometry (VBM). Volumetric alterations in subcortical structures and cortical thinning were also determined. RESULTS Patients with left TLE demonstrated more prevailing and widespread changes in subcortical volumes and cortical thickness than right TLE, mainly in the left hemisphere, compared to the healthy group. Both VBM analysis and subcortical volumetry detected significant hippocampal atrophy in ipsilateral compared to contralateral side in TLE group. In addition to hippocampus, subcortical volumetry found the thalamus and pallidum bilaterally vulnerable to the TLE. Furthermore, the TLE patients underwent cortical thinning beyond the temporal lobe, affecting gray matter cortices in frontal, parietal, and occipital lobes in the majority of patients, more prevalently for left TLE cases. Exploiting volume changes in individual patients in the hippocampus alone led to 63.6% sensitivity and 100% specificity for lateralization of TLE. CONCLUSION Alteration of gray matter volumes in subcortical regions and neocortical temporal structures and also cortical gray matter thickness were evidenced as common effects of epileptogenicity, as manifested by the majority of cases in this study.
Collapse
Affiliation(s)
- Majdi Jber
- Medical School, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roya Sharifpour
- Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Marzbani
- Department of Biomedical Engineering, Amirkabir University of Technology (AUT), Tehran, Iran
| | - Masoud Hassanpour
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Seyfi
- Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mohammadi Mobarakeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmedreza Keihani
- Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Ay
- Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Nazem-Zadeh
- Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Park J, Park KM, Jo G, Lee H, Choi BS, Shin KJ, Ha S, Park S, Lee HJ, Kim HY. An investigation of thalamic nuclei volumes and the intrinsic thalamic structural network based on motor subtype in drug naïve patients with Parkinson's disease. Parkinsonism Relat Disord 2020; 81:165-172. [PMID: 33160215 DOI: 10.1016/j.parkreldis.2020.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION This study aimed to investigate the alterations in thalamic nuclei volumes and the intrinsic thalamic structural network in patients with de novo Parkinson's disease (PD) based on their predominant symptoms. METHODS We enrolled 65 patients with de novo PD (44 patients with tremor-dominant [TD] subtype and 21 patients with postural instability and gait disturbance [PIGD] subtype) and 20 healthy controls. All subjects underwent three-dimensional T1-weighted magnetic resonance imaging. The thalamic nuclei were segmented using the FreeSurfer program. RESULTS We obtained volumetric differences in the thalamic nuclei of each subtype of PD in comparison of healthy control. Volumes of the right and left suprageniculate nuclei were significantly increased, whereas that of the left parafascicular nucleus was decreased in patients with the TD subtype. Volumes of the right and left suprageniculate nuclei and right ventromedial nucleus were significantly increased, whereas those of the right and left parafascicular nuclei volumes were decreased in patients with the PIGD subtype. The measures of the intrinsic thalamic global network were not different between patients with TD PD and healthy controls. However, in patients with the PIGD subtype, the global and local efficiencies were significantly increased compared to healthy controls. Moreover, although there were no differences in thalamic volume and intrinsic thalamic global network between patients with the TD and PIGD variants, we identified significant differences in the intrinsic thalamic local network between the two groups. CONCLUSIONS Alterations in thalamic nuclei volumes and the intrinsic thalamic network in patients with PD differed based on their predominant symptoms. These findings might be related to the underlying pathogenesis and suggest that PD is a heterogeneous syndrome.
Collapse
Affiliation(s)
- Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Geunyeol Jo
- Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hyungon Lee
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Byeong Sam Choi
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoung Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Samyeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Seongho Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
14
|
Longitudinal analysis of structural connectivity in patients with newly diagnosed focal epilepsy of unknown origin. Clin Neurol Neurosurg 2020; 199:106264. [PMID: 33031991 DOI: 10.1016/j.clineuro.2020.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this longitudinal study was to clarify whether significant alterations in structural connectivity occur over time in patients with newly diagnosed focal epilepsy of unknown origin. METHODS A total of 40 patients with newly diagnosed focal epilepsy of unknown origin and with normal brain magnetic resonance imaging (MRI) on visual inspection were enrolled. All subjects underwent MRI twice involving three-dimensional volumetric T1-weighted imaging, which were suitable for structural volume analysis. Gray matter volumes were obtained using the FreeSurfer image analysis suite, and structural connectivity analyses were performed using Matlab-based BRain Analysis using graPH theory software. RESULTS The median interval between the two MRI scans was 18.5 months in patients with epilepsy. There was a general tendency toward decreased gray matter volumes on the second scan compared with the initial scan. However, the volumes of the right and left thalamus and brainstem on the second MRI scan had an increased tendency compared with those on the initial MRI scan. In measures of connectivity, there were significant differences between the two MRI scans. The mean clustering coefficient, global efficiency, local efficiency, and the small-worldness index were significantly increased, whereas the characteristic path length was decreased on the second MRI scan compared with the initial MRI scan. CONCLUSIONS The structural connectivity in patients with newly diagnosed focal epilepsy of unknown origin increases over time in the initial stage. These alterations and increases in structural connectivity may be related to underlying epileptogenicity in the initial stages of epilepsy.
Collapse
|
15
|
Lee HJ, Park KM. Intrinsic hippocampal and thalamic networks in temporal lobe epilepsy with hippocampal sclerosis according to drug response. Seizure 2020; 76:32-38. [PMID: 31986443 DOI: 10.1016/j.seizure.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this study was to investigate whether intrinsic hippocampal or thalamic networks in patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) were different according to antiepileptic drug (AED) response. METHODS We enrolled 80 patients with TLE with HS and 40 healthy controls. Of the patients with TLE with HS, 43 were classified as a drug-resistant epilepsy (DRE) group, whereas 37 patients were enrolled as a drug-controlled epilepsy (DCE) group. We investigated the structural connectivity of the global brain, intrinsic hippocampal, and intrinsic thalamic networks based on structural volumes in the patients with DRE and DCE, and analyzed the differences between them. RESULTS There were significant alterations of the intrinsic hippocampal network compared with healthy controls. The average degree and the global efficiency were decreased, whereas the characteristic path length was increased in the patients with DRE compared with those in healthy controls. In the patients with DCE, only the small-worldness index was decreased compared with healthy controls. Compared to the patients with DCE, the mean clustering coefficient was increased in the patients with DRE. CONCLUSION We found that the intrinsic hippocampal network in patients with TLE with HS was different according to AED response. The patients with DRE had more severe disruptions of the intrinsic hippocampal network than those with DCE compared with healthy controls. These findings suggested that the hippocampal network might be related to AED response and could be a new biomarker of medical outcome in patients with TLE with HS.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
16
|
Ono SE, de Carvalho Neto A, Joaquim MJM, Dos Santos GR, de Paola L, Silvado CES. Mesial temporal lobe epilepsy: Revisiting the relation of hippocampal volumetry with memory deficits. Epilepsy Behav 2019; 100:106516. [PMID: 31574430 DOI: 10.1016/j.yebeh.2019.106516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuropsychological tests can infer the lateralization of the epileptogenic focus, associating verbal memory to mesial structures in the left temporal lobe and visual or nonverbal memory to the right side. High-field magnetic resonance imaging (MRI) with high-resolution protocols allows acquisitions suitable for advanced postprocessing with precise volumetry of brain structures, and functional MRI demonstrates evidence that epilepsy should be seen as a network pathology, involving several structures in the brain. Since the literature showing associations between the volumetry of brain structures in left and right mesial temporal lobe epilepsy (MTLE) and verbal and visual memory performance on neuropsychological tests is conflicting, we revisited these relationships, considering the hippocampal volumetry of patients with unilateral MTLE. METHODS Automatized hippocampal volumes were obtained using FreeSurfer software from MRI exams of 35 patients with unilateral MTLE and hippocampal atrophy and homolateral ictal onset zone defined by video electroencephalography concordant to the side of hippocampal volume reduction (15 on the left side). Verbal memory was assessed using the Rey Auditory-Verbal Learning Test (RAVLT), and visual memory tests employed the Rey-Osterrieth Complex Figure Test (ROCFT). The statistical analysis explored relationships between hippocampal volumetry, lateralization, and performance on memory tests. RESULTS In general, we observed deficits in both verbal and visual memory for patients with left and right hippocampal volume reduction. Patients with left hippocampal volume reduction had poorer performance on verbal memory tests compared with those with right hippocampal atrophy (t = -3.813, p < 0.001). Visual memory deficits were seen on both left and right MTLE without a statistically significant difference (t = 0.074, p = 0.942). The correlation between the Hippocampal Asymmetry Index (HAI) and visual and verbal Z-scores was significant only for visual Z-score in right MTLE (R = -0.45, p = 0.048). CONCLUSIONS Verbal memory deficit seems to be more consistent in patients with left hippocampal volume reduction. Although it had only a moderate correlation to HAI, visual memory deficit is suggested as a poorer indicator for right MTLE. Considering that verbal and visual memory deficits are seen on both right and left MTLE, MTLE should not be regarded as a unilateral, focal, or local insult but as a multifactorial and network pathology, possibly involving several brain structures.
Collapse
Affiliation(s)
- Sergio Eiji Ono
- Clínica Diagnóstico Avançado por Imagem - DAPI, Curitiba, PR, Brazil.
| | - Arnolfo de Carvalho Neto
- Clínica Diagnóstico Avançado por Imagem - DAPI, Curitiba, PR, Brazil; Epilepsy and EEG Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Luciano de Paola
- Epilepsy and EEG Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
17
|
Lee H, Park KM. Structural and functional connectivity in newly diagnosed juvenile myoclonic epilepsy. Acta Neurol Scand 2019; 139:469-475. [PMID: 30758836 DOI: 10.1111/ane.13079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES We aimed to evaluate structural and functional connectivity of patients with newly diagnosed juvenile myoclonic epilepsy (JME) compared to healthy subjects. METHODS We enrolled 36 patients with a diagnosis of JME, who were newly diagnosed and drug-naïve. They underwent T1-weighted imaging, and structural volumes were calculated using FreeSurfer software. In addition, EEG data were obtained from all of them. Structural and functional connectivity matrices were estimated by calculating the structural volumes and EEG amplitude correlation, respectively. Then, the connectivity measures were calculated using the BRAPH program. We also enrolled healthy subjects to compare its structural and functional connectivity with the patients with JME. RESULTS We observed that patients with JME exhibited significantly different functional and structural connectivity compared to healthy control subjects. In the global structural connectivity, global efficiency, and local efficiency, and small-worldness index were decreased, whereas characteristic path length was increased in patients with JME. Betweenness centrality of cingulate, precentral, superior parietal, and superior frontal cortex was increased in patients with JME whereas that of hippocampus was decreased. In the functional connectivity, the betweenness centrality of the fronto-central electrodes was significantly increased. CONCLUSIONS This study reports that the structural connectivity and functional connectivity in patients with JME are significantly different from those in healthy control subjects, even those with newly diagnosed drug-naive state. The patients with JME exhibited disrupted topological disorganization of the global brain network and hub reorganization in structural and functional connectivity. These alterations are implicated in the pathogenesis of JME and suggestive of network disease.
Collapse
Affiliation(s)
- Ho‐Joon Lee
- Department of Radiology Haeundae Paik Hospital Busan Korea
| | - Kang Min Park
- Department of Neurology Haeundae Paik Hospital Busan Korea
| |
Collapse
|