1
|
Hagiwara K. [Insular lobe epilepsy. Part 1: semiology]. Rinsho Shinkeigaku 2024; 64:527-539. [PMID: 39069491 DOI: 10.5692/clinicalneurol.cn-001930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The insula is often referred to as "the fifth lobe" of the brain, and its accessibility used to be very limited due to the deep location under the opercula as well as the sylvian vasculature. It was not until the availability of modern stereo-electroencephalography (SEEG) technique that the intracranial electrodes could be safely and chronically implanted within the insula, thereby enabling anatomo-electro-clinical correlations in seizures of this deep origin. Since the first report of SEEG-recorded insular seizures in late 1990s, the knowledge of insular lobe epilepsy (ILE) has rapidly expanded. Being on the frontline for the diagnosis and management of epilepsy, neurologists should have a precise understanding of ILE to differentiate it from epilepsies of other lobes or non-epileptic conditions. Owing to the multimodal nature and rich anatomo-functional connections of the insula, ILE has a wide range of clinical presentations. The following symptoms should heighten the suspicion of ILE: somatosensory symptoms involving a large/bilateral cutaneous territory or taking on thermal/painful character, and cervico-laryngeal discomfort. The latter ranges from slight dyspnea to a strong sensation of strangulation (laryngeal constriction). Other symptoms include epigastric discomfort/nausea, hypersalivation, auditory, vestibular, gustatory, and aphasic symptoms. However, most of these insulo-opercular symptoms can easily be masked by those of extra-insular seizure propagation. Indeed, sleep-related hyperkinetic (hypermotor) epilepsy (SHE) is a common clinical presentation of ILE, which shows predominant hyperkinetic and/or tonic-dystonic features that are often indistinguishable from those of fronto-mesial seizures. Subtle objective signs, such as constrictive throat noise (i.e., laryngeal constriction) or aversive behavior (e.g., facial grimacing suggesting pain), are often the sole clue in diagnosing insular SHE. Insular-origin seizures should also be considered in temporal-like seizures without frank anatomo-electro-clinical correlations. All in all, ILE is not the epilepsy of an isolated island but rather of a crucial hub involved in the multifaceted roles of the brain.
Collapse
|
2
|
Caruana F. Positive emotions elicited by cortical and subcortical electrical stimulation: A commentary on Villard et al. (2023). Cortex 2024; 174:234-237. [PMID: 37659914 DOI: 10.1016/j.cortex.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, 43125 Parma, Italy.
| |
Collapse
|
3
|
Rahman E, Mosahebi A, Carruthers JDA, Carruthers A. The Efficacy and Duration of Onabotulinum Toxin A in Improving Upper Facial Expression Lines With 64-Unit Dose Optimization: A Systematic Review and Meta-Analysis With Trial Sequential Analysis of the Randomized Controlled Trials. Aesthet Surg J 2023; 43:215-229. [PMID: 36099476 DOI: 10.1093/asj/sjac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Onabotulinumtoxin A (Onabot A) was the first treatment to be approved for aesthetic indications, namely glabellar lines (GLs), crow's feet lines (CFLs), and forehead lines (FHLs), with a cumulative dose of 64 U. OBJECTIVES The aim of this study was to conduct a meta-analysis to combine the available data for approved doses for GLs, CFLs, and FHLs to explore the effect and duration of simultaneous treatment with Onabot A. METHODS PubMed/MEDLINE, Embase, and other national clinical trial registries were searched for randomized controlled trials from January 2010 to July 2022. The meta-analysis, trial sequential analysis, and investigator-assessed time to return to nonresponder status in GLs, CFLs, and FHLs following Onabot A were plotted to elicit a cumulative dose-adjusted response curve based on Kaplan-Meier analysis with a log-rank test. RESULTS Fourteen randomized controlled trials were eligible for quantitative analysis. A total of 8369 subjects were recruited across the trials. The meta-analysis results show that Onabot A is very effective in reducing moderate to severe GLs, CFLs, and FHLs. The cumulative Z-curve for GLs, CFLs, and FHLs also exceeds the required information size (RIS). Kaplan-Meier analysis with a log-rank test demonstrated that simultaneous treatment of GLs, CFLs, and FHLs requires 182 days (95% CI = 179, 215 days) (P < 0.00002) to return to nonresponder status. CONCLUSIONS Treatment of the upper facial expression lines with Onabot A is effective, and the approved cumulative dose of 64 U gives longer-lasting effects. LEVEL OF EVIDENCE: 1
Collapse
Affiliation(s)
- Eqram Rahman
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK and an evidence-based medicine editor of Aesthetic Surgery Journal
| | - Afshin Mosahebi
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK and a research section editor of Aesthetic Surgery Journal
| | - Jean D A Carruthers
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - Alastair Carruthers
- Department of Dermatology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|
5
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Positive Emotions from Brain Injury: The Emergence of Mirth and Happiness. Case Rep Psychiatry 2020; 2020:5702578. [PMID: 32082679 PMCID: PMC7008292 DOI: 10.1155/2020/5702578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 12/05/2022] Open
Abstract
Brain injury can result in an increase in positive emotions. We describe a 63-year-old man who presented with a prominent personality change after a gunshot wound to the head. He became “content,” light-hearted, and prone to joking and punning. Prior to his brain injury, he suffered from frequent depression and suicidal ideation, which subsequently resolved. Examination showed a large right calvarial defect and right facial weakness, along with memory impairment and variable executive functions. Further testing was notable for excellent performance on joke comprehension, good facial emotional recognition, adequate Theory of Mind, and elevated happiness. Neuroimaging revealed loss of much of the right frontal and right anterior lobes and left orbitofrontal injury. This patient, and the literature, suggests that frontal predominant injury can facilitate the emergence of mirth along with a sense of increased happiness possibly from disinhibited activation of the subcortical reward/pleasure centers of the ventral striatal limbic area.
Collapse
|
7
|
Talami F, Vaudano AE, Meletti S. Motor and Limbic System Contribution to Emotional Laughter across the Lifespan. Cereb Cortex 2019; 30:3381-3391. [PMID: 31848572 DOI: 10.1093/cercor/bhz316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laughter is a universal human behavior generated by the cooperation of different systems toward the construction of an expressive vocal pattern. Given the sensitivity of neuroimaging techniques to movements, the neural mechanisms underlying laughter expression remain unclear. Herein, we characterized the neural correlates of emotional laughter using the onsets and the duration of laughter bursts to inform functional magnetic resonance imaging. Laughter-related blood oxygen level-dependent (BOLD) increases involved both the motor (motor cortex, supplementary motor area, frontal operculum) and the emotional/limbic (anterior cingulate cortex, amygdala, n. accumbens, hippocampus) systems, as well as modulatory circuitries encompassing the basal ganglia, thalamus, and cerebellum. BOLD changes related to the 2 s preceding the laughter outbreak were selectively observed at the temporo-occipital junction and the periaqueductal gray matter, supporting the role of the former in the detection of incongruity and the gating role of the latter in the initiation of spontaneous laughter. Moreover, developmental changes were identified in laughter processing, consisting in a greater engagement of the reward circuitry in younger subjects; conversely, the default mode network appears more activated in older participants. Our findings contribute valuable information about the processing of real-life humorous materials and suggest a close link between laughter-related motor, affective, and cognitive elements, confirming its complex and multi-faceted nature.
Collapse
Affiliation(s)
- Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy.,Neurology Unit, OCB Hospital, Azienda Ospedaliera Universitaria di Modena, 41100 Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy.,Neurology Unit, OCB Hospital, Azienda Ospedaliera Universitaria di Modena, 41100 Modena, Italy
| |
Collapse
|