1
|
Kunisada T, Nakata E, Fujiwara T, Hata T, Sato K, Katayama H, Kondo A, Ozaki T. Clinical Application of Unidirectional Porous Hydroxyapatite to Bone Tumor Surgery and Other Orthopedic Surgery. Biomimetics (Basel) 2024; 9:294. [PMID: 38786504 PMCID: PMC11117865 DOI: 10.3390/biomimetics9050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of bone tumors. Excellent bone formation within and around the implant was observed in all patients treated with intralesional resection and UDPHAp implantation for benign bone tumors. The absorption of UDPHAp and remodeling of the bone marrow space was observed in 45% of the patients at a mean of 17 months postoperatively and was significantly more common in younger patients. Preoperative cortical thinning was completely regenerated in 84% of patients at a mean of 10 months postoperatively. No complications related to the implanted UDPHAp were observed. In a pediatric patient with bone sarcoma, when the defect after fibular resection was filled with UDPHAp implants, radiography showed complete resorption of the implant and clear formation of cortex and marrow in the resected part of the fibula. The patient could walk well without crutches and participate in sports activities. UDPHAp is a useful bone graft substitute for the treatment of benign bone tumors, and the use of this material has a low complication rate. We also review and discuss the potential of UDPHAp as a bone graft substitute in the clinical setting of orthopedic surgery.
Collapse
Affiliation(s)
- Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Toshiaki Hata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Kohei Sato
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Ayana Kondo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
2
|
Wu W, Zhang S, Yan T. Initial clinical experiences of the muscle-preserving double door cervical laminoplasty with adjustable mini plates. Front Surg 2023; 9:1049937. [PMID: 36726947 PMCID: PMC9885206 DOI: 10.3389/fsurg.2022.1049937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 01/17/2023] Open
Abstract
Shirashi's double door laminoplasty method was a popular decompression procedure for cervical myelopathy. In this paper, we introduced a modified double door laminoplasty based on Shirashi's method with preliminary results. This study retrospectively analyzed 22 patients who underwent modified double door laminoplasty. During procedure, a single segment of the unilateral lamina was separated from the cervical semispinalis muscle and the multifidus muscle space for the preparation of lamina groove. A self-developed mini titanium plate was used to fix the inner side of the spinous process to complete the fixation after open-door process. The VAS, JOA scores and QoL scale were recorded for pain assessment, neurological and functional recovery. The overall curvature and range of motion of C2-C7 were measured with x-ray images. Changes in sagittal diameter of spinal canal were measured by CT scans. MRI was used to measure the cross-sectional area of cervical paravertebral muscles. All 22 patients successfully recovered with this procedure. The mean operation time, blood loss and follow-up durations were 117 ± 25 min, 149 ± 32 ml and 16.1 ± 3.6 months respectively. The preoperative, 3-month postoperative and 12-month postoperative JOA scores were 9.35 ± 3.25, 13.74 ± 4.86 and 15.73 ± 5.19 respectively. with improvement rates of 57.4% and 83.4%. Mean VAS scores before, 3 months after and 12 months after surgery were 1.81 ± 0.79, 2.82 ± 1.56 and 2.18 ± 1.34 respectively. The C2-7 lordotic angle and overall range of motion shows no statistical difference preoperatively and 12 post-surgery. The average sagittal diameter of the cervical spinal canal was enlarged from 9.15 ± 1.55 mm to 14.25 ± 1.46 mm. The average area of cervical paravertebral volume measured preoperatively and 3 months post operation was 84% of pre-operative value respectively. This value was improved to 93% of the preoperative value at 12 months post-surgery. This paper introduced initial experience on a modified posterior cervical double-door laminoplasty that was based on Shirashi's method, featuring creating bilateral laminar grooves on both sides and fixing central gap with self-developed mini plates. This procedure prevented obvious axial symptoms and improved patients' quality of life, which provided a baseline for further research with larger cohorts.
Collapse
|
3
|
Kudoh K, Fukuda N, Akita K, Kudoh T, Takamaru N, Kurio N, Hayashi K, Ishikawa K, Miyamoto Y. Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:2. [PMID: 36586041 PMCID: PMC9805415 DOI: 10.1007/s10856-022-06710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbonate apatite (CO3Ap) granules are useful as a bone substitute because they can be remodeled to new natural bone in a manner that conforms to the bone remodeling process. However, reconstructing large bone defects using CO3Ap granules is difficult because of their granular shape. Therefore, we fabricated CO3Ap honeycomb blocks (HCBs) with continuous unidirectional pores. We aimed to elucidate the tissue response and availability of CO3Ap HCBs in the reconstruction of rabbit mandibular bone defects after marginal mandibulectomy. The percentages of the remaining CO3Ap area and calcified bone area (newly formed bone) were estimated from the histological images. CO3Ap area was 49.1 ± 4.9%, 30.3 ± 3.5%, and 25.5 ± 8.8%, whereas newly formed bone area was 3.0 ± 0.6%, 24.3 ± 3.3%, and 34.7 ± 4.8% at 4, 8, and 12 weeks, respectively, after implantation. Thus, CO3Ap HCBs were gradually resorbed and replaced by new bone. The newly formed bone penetrated most of the pores in the CO3Ap HCBs at 12 weeks after implantation. By contrast, the granulation tissue scarcely invaded the CO3Ap HCBs. Some osteoclasts invaded the wall of CO3Ap HCBs, making resorption pits. Furthermore, many osteoblasts were found on the newly formed bone, indicating ongoing bone remodeling. Blood vessels were also formed inside most of the pores in the CO3Ap HCBs. These findings suggest that CO3Ap HCBs have good osteoconductivity and can be used for the reconstruction of large mandibular bone defects. The CO3Ap HCB were gradually resorbed and replaced by newly formed bone.
Collapse
Affiliation(s)
- Keiko Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Naoyuki Fukuda
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Akita
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsumi Takamaru
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naito Kurio
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Hayashi
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Youji Miyamoto
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Sakemi Y, Hayashi K, Tsuchiya A, Nakashima Y, Ishikawa K. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds. J Biomed Mater Res A 2021; 109:1613-1622. [PMID: 33644971 DOI: 10.1002/jbm.a.37157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Critical-size segmental defects are formidable challenges in orthopedic surgery. Various scaffolds have been developed to facilitate bone reconstruction within such defects. Many previously studied scaffolds achieved effective outcomes with a combination of high cost, high-risk growth factors or stem cells. Herein, we developed honeycomb scaffolds (HCSs) comprising carbonate apatite (CO3 Ap) containing 8% carbonate, identical to human bone composition. The CO3 Ap HCSs were white-columned blocks harboring regularly arranged macropore channels of a size and wall thickness of 156 ± 5 μm and 102 ± 10 μm, respectively. The compressive strengths of the HCSs parallel and perpendicular to the macropore channel direction were 51.0 ± 11.8 and 15.6 ± 2.2 MPa, respectively. The HCSs were grafted into critical-sized segmental defects in rat femurs. The HCSs bore high-load stresses without any observed breakage. Two-weeks post-implantation, calluses formed around the HCSs and immature bone formed in the HCS interior. The calluses and immature bone matured until 8 weeks via endochondral ossification. At 12 weeks post-implantation, large parts of the HCSs were gradually replaced by newly formed bone. The bone reconstruction efficacy of the CO3 Ap HCSs alone was comparable to that of protein and cell scaffolds, while achieving a lower cost and increased safety.
Collapse
Affiliation(s)
- Yuta Sakemi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Hayashi K, Ishikawa K. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. J Mater Chem B 2021; 8:8536-8545. [PMID: 32822446 DOI: 10.1039/d0tb01498b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scaffold chemical composition and pore architecture are critical for successful bone regeneration. Although the effects of chemical composition, micron-scale pores, and macropores (≥100 μm) are known, those of nanometer-scale pores (nanopores) are unknown. Here, honeycomb scaffolds (HCSs) composed of carbonate apatite and bone mineral, were fabricated with three distinct nanopore volumes, while other parameters were comparable between HCSs. Their compressive strengths and nanopore volumes linearly correlated. The HCSs were implanted into critical-sized bone defects (CSDs) in the rabbit femur distal epiphyses. The nanopore volume affected both osteoclastogenesis and osteogenesis. HCSs with nanopore volumes of ≥0.15 cm3 g-1 promoted osteoclastogenesis, contributing to bone maturation and bone formation within 4 weeks. However, HCSs with nanopore volumes of 0.07 cm3 g-1 promoted significantly less bone maturation and neoformation. Nevertheless, HCSs with nanopore volumes of ≥0.18 cm3 g-1 did not undergo continuous bone regeneration throughout the 12 week period due to excessive osteoclastogenesis, which favored HCS resorption over bone neoformation. When the nanopore volume was 0.15 cm3 g-1, osteoclastogenesis and osteogenesis progressed harmonically, resulting in HCS replacement with new bone. Our results demonstrate that the nanopore volume is critical for controlling osteoclastogenesis and osteogenesis. These insights may help establish a coherent strategy for developing scaffolds for different applications.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Unidirectional porous beta-tricalcium phosphate and hydroxyapatite artificial bone: a review of experimental evaluations and clinical applications. J Artif Organs 2021; 24:103-110. [PMID: 33893573 PMCID: PMC8154753 DOI: 10.1007/s10047-021-01270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
In Japan, where allograft bone transplantation is not widespread, prospects for artificial bones are very high. Therefore, artificial bones with various compositions, porous structures, and porosities have been developed and employed for clinical use. Both Affinos® and Regenos® (made of beta-tricalcium phosphate and hydroxyapatite, respectively) are artificial bones with a unique unidirectional porous structure, in which pores with a diameter suitable for tissue penetration (25–300 μm) are aligned in one direction. The unidirectional porous structure allows rapid penetration of blood deep into the materials by a capillary effect. In animal experiments, Affinos® showed well-balanced resorption and was replaced with the host’s own bone from an early stage after implantation and new bone formation and remodeling were observed in the cortical bone and medullary cavity. When implanted for clinical situation, resorption from an early stage and good replacement with the patient’s own bone were also observed. Regenos® has an internal osteon-like material and a vascular-like structure that is maintained within the pores even after long-term implantation, as noted in an animal experiment. When implanted for clinical situation, good osteoconductivity was observed from an early stage of implantation. In addition, the material was observed to be slowly absorbed over time in some cases. We have discussed the beneficial effects of combining teriparatide and platelet-rich plasma impregnation and the potential prospects of these artificial bones.
Collapse
|
7
|
Hayashi K, Ishikawa K. Honeycomb Scaffolds Fabricated Using Extrusion Molding and the Sphere-Packing Theory for Bone Regeneration. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Kunisada T, Hasei J, Fujiwara T, Nakata E, Yokoo S, Demiya K, Ozaki T. Radiographic and clinical assessment of unidirectional porous hydroxyapatite to treat benign bone tumors. Sci Rep 2020; 10:21578. [PMID: 33299043 PMCID: PMC7725991 DOI: 10.1038/s41598-020-78409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
Unidirectional porous hydroxyapatite (UDPHAp) was developed as an excellent scaffold with unidirectional pores oriented in the horizontal direction with interpore connections. The purpose of this study was to assess radiographic changes and clinical outcomes and complications following UDPHAp implantation to treat benign bone tumors. We retrospectively analyzed 44 patients treated with intralesional resection and UDPHAp implantation for benign bone tumors between 2010 and 2015. Clinical and radiographic findings were evaluated postoperatively at regular follow-up visits. The mean follow-up was 49 months. Radiographic changes were classified into five stages based on bone formation in the implanted UDPHAp according to Tamai’s classification. All patients showed excellent bone formation inside and around implanted UDPHAp. Absorption of UDPHAp and bone marrow cavity remodeling was identified in 20 patients at a mean of 17 months postoperatively, and was significantly more common in young patients. Preoperative cortical thinning was completely regenerated in 26 of 31 patients on average 10 months after surgery. There were no cases of delayed wound healing, postoperative infection, or allergic reaction related to implanted UDPHAp. UDPHAp is a useful bone-filling substitute for treating benign bone tumor, and the use of this material has a low complication rate.
Collapse
Affiliation(s)
- Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan. .,Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan.
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| | - Suguru Yokoo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| | - Koji Demiya
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan
| |
Collapse
|
9
|
Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110848. [PMID: 32279778 DOI: 10.1016/j.msec.2020.110848] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
The pore architecture of scaffolds is a critical factor for angiogenesis and bone regeneration. Although the effects of scaffold macropore size have been investigated, most scaffolds feature macropores with poor uniformity and interconnectivity, and other parameters (e.g., microporosity, chemical composition, and strut thickness) differ among scaffolds. To clarify the threshold of effective macropore size, we fabricated honeycomb scaffolds (HCSs) with distinct macropore (i.e., channel) sizes (~100, ~200, and ~300 μm). The HCSs were composed of AB-type carbonate apatite with ~8.5% carbonate ions, i.e., the same composition as human bone mineral. Their honeycomb architecture displayed uniformly sized and orderly arranged channels with extremely high interconnectivity, and all the HCSs displayed ~100-μm-thick struts and 0.06 cm3 g-1 of micropore volume. The compressive strengths of HCSs with ~100-, ~200-, and ~300-μm channels were higher than those of reported scaffolds, and decreased with increasing channel size: 62 ± 6, 55 ± 9, and 43 ± 8 MPa, respectively. At four weeks after implantation in rabbit femur bone defects, new bone and blood vessels were formed in all the channels of these HCSs. Notably, the ~300-μm channels were extensively occupied by new bone. We demonstrated that high interconnectivity and uniformity of channels can decrease the threshold of effective macropore size, enabling the scaffolds to maintain high mechanical properties and osteogenic ability and serve as implants for weight-bearing areas.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Melvin L Munar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Takeoka Y, Yurube T, Maeno K, Kanda Y, Tsujimoto R, Miyazaki K, Kakiuchi Y, Miyazaki S, Zhang Z, Takada T, Nishida K, Doita M, Kuroda R, Kakutani K. Improved bone bonding of hydroxyapatite spacers with a high porosity in a quantitative computed tomography-image pixel analysis: A prospective 1-year comparative study of the consecutive cohort undergoing double-door cervical laminoplasty. JOR Spine 2020; 3:e1080. [PMID: 32211591 PMCID: PMC7084048 DOI: 10.1002/jsp2.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 11/29/2022] Open
Abstract
Laminoplasty using hydroxyapatite (HA) spacers is widely performed in patients with cervical myelopathy. However, spacer dislocation is a critical complication caused by bone absorption and inadequate bone conductivity, and can result in dural damage and restenosis. We thus designed a prospective cohort study to clarify the feasibility of increased porosity HA spacers for double-door laminoplasty by analyzing computed tomography (CT) images. Forty-seven patients underwent cervical laminoplasty. Two different types of CERATITE HA spacer were used, either high porosity (50%) or low porosity (35%). These HA spacers were placed in an alternating manner into the laminae in each patient. In total, 85 high-porosity (50%) HA spacers and 84 low-porosity (35%) HA spacers were implanted. At postoperative 2 weeks, 3 months, 6 months, and 1 year, CT images were obtained. In both groups, the percentage of bone-bonding boundary area of the HA spacer in contact with laminae and bone volume of the spinous process relative to the 2-week value were calculated by a 3D and 2D CT-image pixel analysis. The bone-bonding ratio was significantly higher in high-porosity (50%) than low-porosity (35%) HA spacers at 3 months and thereafter (1 year, 69.3 ± 27.8% and 49.7 ± 32.9% respectively, P < .01). The bone volume in both groups significantly decreased with time (1 year, 73.2 ± 29.8% and 69.0 ± 30.4% respectively, P < .01), indicating bone absorption. This showed no significant difference between the HA spacers (P = .15) but was higher in high-porosity (50%) than low-porosity (35%) HA spacers throughout the study period. Meanwhile, spacer breakage was found in 4.7% of high-porosity (50%) HA spacers and 1.2% of low-porosity (35%) HA spacers (P = .37). In summary, high-porosity (50%) HA spacers have the advantages of accelerated bone bonding and relatively decelerated bone absorption compared to low-porosity (35%) HA spacers; however, possibly more frequent breakage of HA spacers with a high porosity (50%) requires careful, extended postoperative follow-up.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | | | - Yutaro Kanda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryu Tsujimoto
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kunihiko Miyazaki
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yuji Kakiuchi
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Shingo Miyazaki
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Zhongying Zhang
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Toru Takada
- Department of Orthopaedic SurgeryKobe Hokuto HospitalKobeJapan
| | - Kotaro Nishida
- Department of Orthopedic SurgeryGraduate School of Medicine, University of the RyukyusOkinawaJapan
| | - Minoru Doita
- Department of Orthopaedic SurgeryIwate Medical University Graduate School of MedicineIwateJapan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kenichiro Kakutani
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
11
|
Regeneration of the Fibula with Unidirectional Porous Hydroxyapatite. Case Rep Orthop 2019; 2019:9024643. [PMID: 31737394 PMCID: PMC6815582 DOI: 10.1155/2019/9024643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
A fibula graft is one of the most common orthopedic procedures for reconstruction of a bone defect, and some complications related to persistent defects of the fibula have been reported previously. We believe that regeneration of the fibula may be critical for postoperative function and prevention of complications. This report describes a 9-year-old female with Ewing sarcoma of the pelvis who was treated with the double-barrel fibula grafts for pelvic bone defect following tumor resection. The defect after fibular resection was filled with unidirectional porous hydroxyapatite (UDPHAp) implants. A plain radiograph revealed new bone formation and a callus-like structure at one month after surgery and bony union between each UDPHAp implant 5 months after surgery. Resorption of implanted UDPHAp was identified, and partial remodeling of the bone marrow cavity could be seen 1 year 2 months after surgery. A radiograph at final follow-up (5 years 10 months after surgery) demonstrated almost complete absorption of the implanted UDPHAp and clear formation of the cortex and bone marrow in the resected part of the fibula. The patient is able to walk well without any walking supports and to take part in sports activities.
Collapse
|