1
|
Zhang Q, Huang H, Zhang J, Tian Y, Hu Y. E3 ubiquitination ligase XIAP lightens diabetes-induced cognitive impairment by inactivating TXNIP-ERS-mediated neuronal injury. Kaohsiung J Med Sci 2025; 41:e12913. [PMID: 39629879 PMCID: PMC11724162 DOI: 10.1002/kjm2.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 01/30/2025] Open
Abstract
Diabetes-induced cognitive dysfunction (DCD) is a neurological disorder associated with diabetes, characterized by cognitive impairment driven by neuronal injury from chronic high glucose (HG) exposure. This study aims to elucidate the role and mechanisms of the X-linked inhibitor of apoptosis protein (XIAP)/thioredoxin-interacting protein (TXNIP) in hippocampal neuron cell death and cognitive function within DCD models. A diabetic rat model was established using a high-fat/sucrose diet and streptozotocin injection. Primary hippocampal neurons were stimulated with HG to mimic diabetic conditions. Cognitive and memory functions were assessed using the Morris water maze (MWM) and novel object recognition test (ORT).
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, the 1st Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvincePR China
| | - Hai‐Jin Huang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, the 1st Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvincePR China
| | - Jing‐Ling Zhang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, the 1st Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvincePR China
| | - Ying Tian
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, the 1st Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvincePR China
| | - Ying Hu
- Department of Endocrinology and Metabolism, the 1st Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvincePR China
- Jiangxi Clinical Research Center for Endocrine and Metabolic DiseaseNanchangJiangxi ProvincePR China
- Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxi ProvincePR China
| |
Collapse
|
2
|
Liu YQ, Chen G, Wang KW, Yan XJ, Zhan CP, Yu GF. UCF-101 ameliorates traumatic brain injury by promoting microglia M2 polarization via AMPK/NF-κB pathways in LPS-induced BV2 cells. J Mol Histol 2024; 56:61. [PMID: 39739143 DOI: 10.1007/s10735-024-10336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Traumatic brain injury (TBI) is a common neurosurgical emergency. As a macrophage in brain, microglia involves in secondary TBI injury. UCF-101, an Omi/HtrA2 inhibitor, protects against neurological disorders. This study aims to investigate the effects of UCF-101 in TBI and its mechanism. Mouse microglia cell BV2 cells were exposed to 1 µg/mL LPS to construct TBI in vitro models. Following CCK8 assay, cells were treated with LPS + UCF-101 (2, 5, 10 µM), LPS + Compound C (AMPK inhibitor, 20 µM), and LPS + UCF-101 + Compound C groups. With lactate dehydrogenase (LDH) content detection, ELISA and qRT-PCR assays were used to measure proinflammatory factors. Biomarkers of M1 (CD16/32 and iNOS) and M2 phenotypes (CD206), as well as AMPK/NF-κB pathway-related protein expression were assessed by flow cytometry, immunofluorescence, and Western blot methods. There was a decrease in M1 phenotype biomarkers and an increase in M2 phenotype biomarkers after UCF-101 treatment. UCF-101 exposure reduced TNF-α, LDH, IL-1β, IL-6, IL-8, p-NF-κB p65/NF-κB p65, and activated p-AMPK α (T172)/AMPK α (T172) expression. Importantly, further Compound C treatment counteracted these effects of UCF-101. In conclusion, UCF-101 ameliorates TBI by promoting microglia M2 polarization via AMPK/NF-κB pathways in LPS-induced BV2 cells, providing solid scientific foundation for clinical application of UCF-101 in TBI treatment.
Collapse
Affiliation(s)
- Yong-Qi Liu
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Gao Chen
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Ke-Wei Wang
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xin-Jiang Yan
- Department of Neurosurgery, Quzhou People's Hospital, No. 100, Minjiang Avenue, High-speed Rail, New City, Quzhou, Zhejiang, China
| | - Cheng-Peng Zhan
- Department of Neurosurgery, Quzhou People's Hospital, No. 100, Minjiang Avenue, High-speed Rail, New City, Quzhou, Zhejiang, China
| | - Guo-Feng Yu
- Department of Neurosurgery, Quzhou People's Hospital, No. 100, Minjiang Avenue, High-speed Rail, New City, Quzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Liu N, Bai L, Lu Z, Gu R, Zhao D, Yan F, Bai J. TRPV4 contributes to ER stress and inflammation: implications for Parkinson’s disease. J Neuroinflammation 2022; 19:26. [PMID: 35093118 PMCID: PMC8800324 DOI: 10.1186/s12974-022-02382-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Its molecular mechanism is still unclear, and pharmacological treatments are unsatisfactory. Transient receptor potential vanilloid 4 (TRPV4) is a nonselective Ca2+ channel. It has recently emerged as a critical risk factor in the pathophysiology of neuronal injuries and cerebral diseases. Our previous study reported that TRPV4 contributed to endoplasmic reticulum (ER) stress in the MPP+-induced cell model of PD. In the present study, we detected the role and the mechanism of TRPV4 in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. Methods Intracerebral injection of an adeno-associated virus (AAV) into the substantia nigra (SN) of mice was used to knockdown or upregulate the expression of TRPV4 and intraperitoneal injection of MPTP. Rotarod and pole tests were used to evaluate the locomotor ability of mice. We used immunohistochemistry, Nissl staining and Western blot to detect the alterations in the number of tyrosine hydroxylase (TH)-positive neurons, Nissl-positive neurons, the levels of ER stress-associated molecules and proinflammatory cytokines in the SN. Results The SN was transfected with AAV for 3 weeks and expressed the target protein with green fluorescence. Knockdown of TRPV4 via injection of a constructed AAV-TRPV4 shRNAi into the SN alleviated the movement deficits of PD mice. Upregulation of TRPV4 via injection of a constructed AAV-TRPV4 aggravated the above movement disorders. The expression of TRPV4 was upregulated in the SN of MPTP-treated mice. Injection of AAV-TRPV4 shRNAi into the SN rescued the number of TH-positive and Nissl-positive neurons in the SN decreased by MPTP, while injection of AAV-TRPV4 induced the opposite effect. Moreover, MPTP-decreased Sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) and pro-cysteinyl aspartate specific proteinase-12 (procaspase-12), MPTP-increased Glucose-regulated protein 78 (GRP78), Glucose-regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP) were inhibited by AAV-TRPV4 shRNAi infection, and enhanced by AAV-TRPV4. In the same way, MPTP-decreased procaspase-1, MPTP-increased Interleukin-18 (IL-18), Cyclooxgenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) were inhibited by AAV-TRPV4 shRNAi, or further exacerbated by AAV-TRPV4. Conclusions These results suggest that TRPV4 mediates ER stress and inflammation pathways, contributing to the loss of dopamine (DA) neurons in the SN and movement deficits in PD mice. Moreover, this study provides a new perspective on molecular targets and gene therapies for the treatment of PD in the future.
Collapse
|
5
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Liu N, Liu J, Wen X, Bai L, Shao R, Bai J. TRPV4 contributes to ER stress: Relation to apoptosis in the MPP +-induced cell model of Parkinson's disease. Life Sci 2020; 261:118461. [PMID: 32961227 DOI: 10.1016/j.lfs.2020.118461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
AIMS Parkinson's disease (PD) is a multifactorial neurodegenerative disorder. Its molecular mechanism is still unclear. Endoplasmic reticulum (ER) stress has been highlighted in PD. Transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium cation channel. A defined role for TRPV4 in PD has not been reported. The purpose of the present research was to investigate the molecular mechanisms by which TRPV4 regulates ER stress induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in PC12 cells. MAIN METHODS PC12 cells were pretreated with the TRPV4-specific antagonist HC067047 or transfected with TRPV4 siRNA followed by treatment with MPP+. Cell viability was measured by the CCK-8 Assay. The expression of TRPV4, sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94), C/EBP homologous protein (CHOP), procaspase-12, and tyrosine hydroxylase (TH) was detected by western blot and RT-PCR. KEY FINDINGS The expression of TRPV4 was upregulated, while cell viability was decreased by MPP+, which was reversed by HC067047. The ER stress common molecular signature SERCA2 was depressed by MPP+. Moreover, MPP+ induced upregulation of GRP78, GRP94, CHOP, and decrease in procaspase-12 and TH. HC067047 and TRPV4 siRNA reversed MPP+-induced ER stress and restored TH production. SIGNIFICANCE TRPV4 functions upstream of ER stress induced by MPP+ and holds promise as a prospective pharmacotherapy target for PD.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Jinyu Liu
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianbin Wen
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|