1
|
Tang J, Xie Y, Fang R, Tan H, Zeng S, Wen Z, Sun X, Yao T, Wang S, Xie L, Wu D. The mechanism of Sangdantongluo granule in treating post-stroke spasticity based on multimodal fMRI combined with TMS: Study protocol. Contemp Clin Trials Commun 2024; 39:101317. [PMID: 38948333 PMCID: PMC11214411 DOI: 10.1016/j.conctc.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Post-stroke spasticity (PSS) is among the prevalent complications of stroke, greatly affecting motor function recovery and reducing patients' quality of life without timely treatment. Sangdantongluo granule, a modern traditional Chinese patent medicine, has significant clinical efficacy in treating PSS. However, the mechanism of Sangdantongluo granule in treating PSS is still unknown. We designed this study to explore the mechanism of Sangdantongluo granule in treating PSS through multimodal functional magnetic resonance imaging (fMRI) combined with transcranial magnetic stimulation (TMS). Methods and analysis In a single-center, randomized, double-blind, parallel placebo-controlled study, 60 PSS patients will be recruited in China and randomly assigned to either the experimental or control groups at a ratio of 1:1. For eight weeks, Sangdantongluo granule or placebo will be utilized for intervention. The main outcome is the Modified Ashworth Scale (MAS), the secondary outcome includes the Fugl-Meyer Assessment Scale-upper Extremity (FMA-UE), National Institute of Health Stroke Scale (NIHSS), and Modified Rankin Scale (mRS), the mechanism measure is the changes in cortical excitability and multimodal fMRI at baseline and after eight weeks. Ethics and dissemination This study was approved by the Ethics Committee of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine (approval number: [202364]). Clinical trial registration Chinese Clinical Trial Registry, identifier: ChiCTR2300074793. Registered on 16 August 2023.
Collapse
Affiliation(s)
- Jie Tang
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Yao Xie
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Rui Fang
- Institute of Clinical Pharmacology, Hunan Academy of Chinese Medicine, Changsha, 410006, China
| | - Huizhong Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Shanshan Zeng
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Zan Wen
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Xiongxing Sun
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208, China
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Ting Yao
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Shiliang Wang
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Le Xie
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| | - Dahua Wu
- Department of Neurology, Hunan Academy of Chinese Medicine Affiliated Hospital, Changsha, 410006, China
| |
Collapse
|
2
|
Li G, Lan L, He T, Tang Z, Liu S, Li Y, Huang Z, Guan Y, Li X, Zhang Y, Lai HY. Comprehensive Assessment of Ischemic Stroke in Nonhuman Primates: Neuroimaging, Behavioral, and Serum Proteomic Analysis. ACS Chem Neurosci 2024; 15:1548-1559. [PMID: 38527459 PMCID: PMC10996879 DOI: 10.1021/acschemneuro.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.
Collapse
Affiliation(s)
- Ge Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Lan Lan
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- Department
of Psychology and Behavior Science, Zhejiang
University, Hangzhou 310029, China
| | - Tingting He
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
| | - Zheng Tang
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
| | - Shuhua Liu
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yunfeng Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Zhongqiang Huang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yalun Guan
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xuejiao Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yu Zhang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Hsin-Yi Lai
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
- Liangzhu
Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine
Integration, State Key Laboratory of Brain-machine Intelligence, School
of Brain Science and Brain Medicine, Zhejiang
University, Hangzhou 310029, China
- Affiliated
Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
3
|
Yang ZC, Yin CD, Yeh FC, Xue BW, Song XY, Li G, Deng ZH, Sun SJ, Hou ZG, Xie J. A preliminary study on corticospinal tract morphology in incidental and symptomatic insular low-grade glioma: implications for post-surgical motor outcomes. Neuroimage Clin 2023; 40:103521. [PMID: 37857233 PMCID: PMC10598056 DOI: 10.1016/j.nicl.2023.103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Our study aimed to investigate the shape and diffusion properties of the corticospinal tract (CST) in patients with insular incidental and symptomatic low-grade gliomas (LGGs), especially those in the incidental group, and evaluate their association with post-surgical motor function. METHODS We performed automatic fiber tracking on 41 LGG patients, comparing macroscopic shape and microscopic diffusion properties of CST between ipsilateral and contralateral tracts in both incidental and symptomatic groups. A correlation analysis was conducted between properties of CST and post-operative motor strength grades. RESULTS In the incidental group, no significant differences in mean diffusion properties were found between bilateral CST. While decreased anisotropy of the CST around the superior limiting sulcus and increased axial diffusivity of the CST near the midbrain level were noted, there was no significant correlation between pre-operative diffusion metrics and post-operative motor strength. In comparison, we found significant correlations between the elongation of the affected CST in the preoperative scans and post-operative motor strength in short-term and long-term follow ups (p = 1.810 × 10-4 and p = 9.560 × 10-4, respectively). CONCLUSIONS We found a significant correlation between CST shape measures and post-operative motor function outcomes in patients with incidental insular LGGs. CST morphology shows promise as a potential prognostic factor for identifying functional deficits in this patient population.
Collapse
Affiliation(s)
- Zuo-Cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-Dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo-Wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Jun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zong-Gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Park M, Cho Y, Kim DH, Choi HS, Kim DH, Kim DY. Myelin Water Imaging of Nerve Recovery in Rehabilitating Stroke Patients. J Magn Reson Imaging 2022; 56:1548-1556. [PMID: 35353434 DOI: 10.1002/jmri.28185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myelin water imaging (MWI) using MRI has been introduced as a method to quantify the integrity of myelin in vivo. However, the investigation of its potential to probe myelin changes has been limited. PURPOSE To determine the myelin change using MWI in the corticospinal tract (CST) during the rehabilitation of stroke patients. STUDY TYPE Longitudinal. POPULATION A total of 24 stroke patients within 6 months from the onset (64.3 ± 16.1 years, 14 women, 10 men) and 10 healthy volunteers (27.0 ± 2.2 years, 2 women, 8 men). FIELD STRENGTH/SEQUENCE Three-dimensional multiecho gradient echo sequence and diffusion-weighted echoplanar imaging sequence at 3 T. ASSESSMENT The changes of myelin water fraction (MWF) and fractional anisotropy (FA) during rehabilitation were analyzed in the CST and other regions using tractography software and region of interest drawings by the radiologist. STATISTICAL TESTS A paired t-test was performed to investigate the change of MRI metrics during rehabilitation. In addition, an independent two-sample t-test was performed to investigate the effects of different rehabilitation protocols. A P-value <0.05 was considered significant. RESULTS In the CST, MWF significantly changed from 5.83 ± 0.91% to 6.23 ± 0.97% after rehabilitation while changes of FA (0.442 ± 0.038 to 0.443 ± 0.035) were not significant (P = 0.656). The rate of change in MWF and FA, which were 6.69% and 0.439% respectively, were significantly different. Other regions did not show significant changes (range of MWF change: -3.44% to -1.61%, range of FA change: -1.39% to 0.79%, and range of P-value: 0.144-0.761). Further analysis showed that those with additional robot-assisted rehabilitation had a significantly larger MWF change than those with conventional rehabilitation only (rate of change: 11.2% vs. 3.2%). DATA CONCLUSION The feasibility of using MWI to monitor myelin content was demonstrated by showing the MWF changes during rehabilitation. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Muyul Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yejin Cho
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Seok Choi
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Deog Young Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Christidi F, Tsiptsios D, Fotiadou A, Kitmeridou S, Karatzetzou S, Tsamakis K, Sousanidou A, Psatha EA, Karavasilis E, Seimenis I, Kokkotis C, Aggelousis N, Vadikolias K. Diffusion Tensor Imaging as a Prognostic Tool for Recovery in Acute and Hyperacute Stroke. Neurol Int 2022; 14:841-874. [PMID: 36278693 PMCID: PMC9589952 DOI: 10.3390/neurolint14040069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke represents a major cause of mortality and long-term disability among adult populations, leaving a devastating socioeconomic impact globally. Clinical manifestation of stroke is characterized by great diversity, ranging from minor disability to considerable neurological impairment interfering with activities of daily living and even death. Prognostic ambiguity has stimulated the interest for implementing stroke recovery biomarkers, including those provided by structural neuroimaging techniques, i.e., diffusion tensor imaging (DTI) and tractography for the study of white matter (WM) integrity. Considering the necessity of prompt and accurate prognosis in stroke survivors along with the potential capacity of DTI as a relevant imaging biomarker, the purpose of our study was to review the pertinent literature published within the last decade regarding DTI as a prognostic tool for recovery in acute and hyperacute stroke. We conducted a thorough literature search in two databases (MEDLINE and Science Direct) in order to trace all relevant studies published between 1 January 2012 and 16 March 2022 using predefined terms as key words. Only full-text human studies published in the English language were included. Forty-four studies were identified and are included in this review. We present main findings and by describing several methodological issues, we highlight shortcomings and gaps in the current literature so that research priorities for future research can be outlined. Our review suggests that DTI can track longitudinal changes and identify prognostic correlates in acute and hyperacute stroke patients.
Collapse
Affiliation(s)
- Foteini Christidi
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Aggeliki Fotiadou
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Kitmeridou
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stella Karatzetzou
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK
| | - Anastasia Sousanidou
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Evlampia A. Psatha
- Department of Radiology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Ioannis Seimenis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University, 11527 Athens, Greece
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Konstantinos Vadikolias
- Neurology Department, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Jang SH, Seo HR, Byun DH. Prognosis of the Ipsilesional Corticospinal Tracts with Preserved Integrities at the Early Stage of Cerebral Infarction: Follow Up Diffusion Tensor Tractography Study. Healthcare (Basel) 2022; 10:1096. [PMID: 35742146 PMCID: PMC9222213 DOI: 10.3390/healthcare10061096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
This study examined the prognosis of the ipsilesional corticospinal tracts (CSTs) with preserved integrities at the early stage of cerebral infarction using follow-up diffusion tensor tractography (DTT). Thirty-one patients with a supratentorial infarction were recruited. DTT, Motricity Index (MI), modified Brunnstrom classification (MBC), and functional ambulation category (FAC) were performed twice at the early and chronic stages. The patients were classified into two groups based on the integrity of the ipsilesional CST on the second DTT: Group A (24 patients; 77.4%)—preserved integrity and Group B (7 patients; 22.6%)—disrupted integrity. No significant differences in MI, MBC, and FAC were observed between groups A and B at the first and second evaluations, except for FAC at the first evaluation (p > 0.05). MI, MBC, and FAC at the second evaluation were significantly higher than at the first evaluation in both groups A and B (p < 0.05). On the second DTT, one patient (4.2%) in group A showed a false-positive result, whereas five patients (71.4%) in group B had false-negative results. Approximately 20% of patients showed disruption of the ipsilesional CST at the chronic stage. However, the clinical outcomes in hand and gait functions were generally good. Careful interpretation considering the somatotopy of the ipsilesional CST is needed because of the high false-negative results on DTT at the chronic stage.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 42415, Korea;
| | - Hye Rin Seo
- Sinchon Severance Hospital, Younsei University College of Medicine, Seoul 03722, Korea;
| | - Dong Hyun Byun
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 42415, Korea;
| |
Collapse
|
7
|
Performance Comparison of Different Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients after Stroke. Neural Plast 2022; 2022:4203698. [PMID: 35707519 PMCID: PMC9192322 DOI: 10.1155/2022/4203698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Several neuroimaging methods have been proposed to assess the integrity of the corticospinal tract (CST) for predicting recovery of motor function after stroke, including conventional structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). In this study, we aimed to compare the predicative performance of these methods using different neuroimaging modalities and optimize the prediction protocol for upper limb motor function after stroke in a clinical environment. We assessed 28 first-ever stroke patients with upper limb motor impairment. We used the upper extremity module of the Fugl-Meyer assessment (UE-FM) within 1 month of onset (baseline) and again 3 months poststroke. sMRI (T1- and T2-based) was used to measure CST-weighted lesion load (CST-wLL), and DTI was used to measure the fractional anisotropy asymmetry index (FAAI) and the ratio of fractional anisotropy (rFA). The CST-wLL within 1 month poststroke was closely correlated with upper limb motor outcomes and recovery potential. CST‐wLL ≥ 2.068 cc indicated serious CST damage and a poor outcome (100%). CST‐wLL < 1.799 cc was correlated with a considerable rate (>70%) of upper limb motor function recovery. CST-wLL showed a comparable area under the curve (AUC) to that of the CST-FAAI (p = 0.71). Inclusion of extra-CST-FAAI did not significantly increase the AUC (p = 0.58). Our findings suggest that sMRI-derived CST-wLL is a precise predictor of upper limb motor outcomes 3 months poststroke. We recommend this parameter as a predictive imaging biomarker for classifying patients' recovery prognosis in clinical practice. Conversely, including DTI appeared to induce no significant benefits.
Collapse
|
8
|
Liu J, Wang C, Cheng J, Miao P, Li Z. Dynamic Relationship Between Interhemispheric Functional Connectivity and Corticospinal Tract Changing Pattern After Subcortical Stroke. Front Aging Neurosci 2022; 14:870718. [PMID: 35601612 PMCID: PMC9120434 DOI: 10.3389/fnagi.2022.870718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeIncreased interhemispheric resting-state functional connectivity (rsFC) between the bilateral primary motor cortex (M1) compensates for corticospinal tract (CST) impairment, which facilitates motor recovery in chronic subcortical stroke. However, there is a lack of data on the evolution patterns and correlations between M1–M1 rsFC and diffusion indices of CSTs with different origins after subcortical stroke and their relations with long-term motor outcomes.MethodsA total of 44 patients with subcortical stroke underwent longitudinal structural and functional magnetic resonance imaging (MRI) examinations and clinical assessments at four time points. Diffusion tensor imaging was used to extract fractional anisotropy (FA) values of the affected CSTs with different origins. Resting-state functional MRI was used to calculate the M1–M1 rsFC. Longitudinal patterns of functional and anatomic changes in connections were explored using a linear mixed-effects model. Dynamic relationships between M1–M1 rsFC and FA values of the affected specific CSTs and the impact of these variations on the long-term motor outcomes were analyzed in patients with subcortical stroke.ResultsStroke patients showed a significantly decreased FA in the affected specific CSTs and a gradually increasing M1–M1 rsFC from the acute to the chronic stage. The FA of the affected M1 fiber was negatively correlated with the M1–M1 rsFC from the subacute to the chronic stage, FA of the affected supplementary motor area fiber was negatively correlated with the M1–M1 rsFC in the subacute stage, and FA of the affected M1 fiber in the acute stage was correlated with the long-term motor recovery after subcortical stroke.ConclusionOur findings show that the FA of the affected M1 fiber in the acute stage had the most significant correlation with long-term motor recovery and may be used as an imaging biomarker for predicting motor outcomes after stroke. The compensatory role of the M1–M1 rsFC enhancement may start from the subacute stage in stroke patients with CST impairment.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Jingchun Liu
| | - Caihong Wang
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Caihong Wang
| | - Jingliang Cheng
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peifang Miao
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|