1
|
Duncan HF, Kobayashi Y, Kearney M, Shimizu E. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials. Bioact Mater 2023; 27:574-593. [PMID: 37213443 PMCID: PMC10199232 DOI: 10.1016/j.bioactmat.2023.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on developing minimally-invasive biologically-based 'fillings' that preserve the dental pulp; research that is shifting the paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological-inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stimulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp-capping material. Despite positive results, clinical translation of these innovations requires enterprise to counteract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics or other 'smart' restorations in VPT.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
2
|
Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Biomimetic Approaches in Clinical Endodontics. Biomimetics (Basel) 2022; 7:biomimetics7040229. [PMID: 36546929 PMCID: PMC9775094 DOI: 10.3390/biomimetics7040229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, biomimetic concepts have been widely adopted in various biomedical fields, including clinical dentistry. Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. Currently, new trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region. The aim of this paper is to thoroughly review and discuss various pulp-regenerative approaches and materials used in regenerative endodontics which may highlight the current trends and future research prospects in this particular area.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
- Correspondence: ; Tel.: +92-333-2818500
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | | | - Ricardo E. Oñate-Sánchez
- Department of Special Care in Dentistry, Hospital Morales Meseguer, IMIB-Arrixaca, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
3
|
Lin GSS, Cher CY, Goh YH, Chan DZK, Karobari MI, Lai JCH, Noorani TY. An Insight into the Role of Marine Biopolymer Alginate in Endodontics: A Review. Mar Drugs 2022; 20:md20080539. [PMID: 36005542 PMCID: PMC9409890 DOI: 10.3390/md20080539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is a natural marine biopolymer that has been widely used in biomedical applications, but research on its use as an endodontic material is still sparse in the literature. This pioneer review aims to summarize the emerging roles of alginate and to outline its prospective applications as a core biomaterial in endodontics. Ten electronic databases and five textbooks were used to perform a search of English-language literature on the use of alginate in endodontics published between January 1980 and June 2022. The risk of bias (RoB) of each included study was assessed using the Office of Health Assessment and Translation (OHAT) tool. Subsequently, studies were categorized into three tiers to represent the overall risk. Qualitative analysis was performed, and the articles were sorted into different thematic categories. An initial search yielded a total of 1491 articles, but only 13 articles were chosen. For most domains, all the studies were rated with ‘probably low’ or ‘definitely low’ RoB, except for domains 2 and 6. All included studies fall in the Tier 1 category and were either in vitro, in vivo, or ex vivo. Four thematic categories were identified: endodontic regeneration, intracanal medicament, filing material, and chelating agent. Based on the available evidence, alginate has emerged as a cell carrier and scaffold in regenerative endodontics, a microcapsule delivery system for intracanal medicaments, a chelating agent reinforcing material, and a root canal sealer. More well-designed experiments and clinical trials are needed to warrant the promising advent of this hydrogel-based biomaterial.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| | - Chia Yee Cher
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Yong Hong Goh
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Daryl Zhun Kit Chan
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Mohmed Isaqali Karobari
- Centre for Multidisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Josephine Chang Hui Lai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Tahir Yusuf Noorani
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| |
Collapse
|
4
|
da Silva KTL, Grazziotin-Soares R, de Miranda RR, Novais VR, Carvalho EM, da Silva GR, Bauer J, Carvalho CN. Effect of an enamel matrix derivative (Emdogain) on the microhardness and chemical composition of human root dentin: an in vitro study. Sci Rep 2022; 12:8874. [PMID: 35614202 PMCID: PMC9133032 DOI: 10.1038/s41598-022-13081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
The advantage of using an Enamel matrix derivative EMD Emdogain as an intracanal medication could be a manner to strength the tooth structure, improving the physical and chemical properties of dentin. We tested, in vitro, the effect of Emdogain on the surface microhardness and chemical composition of root dentin. Ten human teeth were used to produce dentin specimens originated from the canal walls (n = 30) that remained in contact to Emdogain gel for 90 days. Baseline and 90-days after Emdogain treatment measurements were performed using Fourier Transform Infrared Spectroscopy (ATR/FTIR), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and Knoop indenters. The use of EMD (Emdogain) for 90 days in contact with human root canal dentin specimens did not alter the microhardness and morphology of dentin. The elemental structure of dentin was altered because there was a reduction in carbonate content.
Collapse
Affiliation(s)
- Karime Tavares Lima da Silva
- Postgraduate Program of Dentistry, CEUMA University, São Luís, Maranhão, Brazil.,Department of Dentistry, Instituto Florence, São Luís, Maranhão, Brazil
| | | | - Rafael Resende de Miranda
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Veridiana Resende Novais
- Postgraduate Program of Dentistry, CEUMA University, São Luís, Maranhão, Brazil.,Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Gisele Rodrigues da Silva
- Postgraduate Program of Dentistry, CEUMA University, São Luís, Maranhão, Brazil.,Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jose Bauer
- Dentistry Biomaterials Laboratory (Biomma), School of Dentistry, University Federal of Maranhão (UFMA), São Luis, MA, Brazil
| | - Ceci Nunes Carvalho
- Postgraduate Program of Dentistry, CEUMA University, São Luís, Maranhão, Brazil.
| |
Collapse
|
5
|
Wang HH, Sarmast ND, Shadmehr E, Angelov N, Shabahang S, Torabinejad M. Application of Enamel Matrix Derivative (Emdogain) in Endodontic Therapy: A Comprehensive Literature Review. J Endod 2018; 44:1066-1079. [DOI: 10.1016/j.joen.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/25/2018] [Accepted: 02/10/2018] [Indexed: 01/28/2023]
|