1
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Xiao Z, Zhang Y, She Y, Yuan G, Yang G. IPO7 promotes lipopolysaccharide-induced inflammatory responses in human dental pulp cells via p38 MAPK and NF-κB signaling pathways. Mol Immunol 2023; 163:116-126. [PMID: 37769576 DOI: 10.1016/j.molimm.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Pulpitis is a chronic inflammatory process that greatly affects the physical, mental health and life quality of patients. Human dental pulp cells (hDPCs) are essential components of dental pulp tissue and play a significant role in pulpitis. Lipopolysaccharide (LPS) is an initiator of pulpitis and can induce the production of inflammatory cytokines in hDPCs by activating p38 MAPK and NF-κB signaling pathways. Importin7 (IPO7), a member of the importin-β family, is widely expressed in many tissues. Previous studies have shown that IPO7 mediated nuclear translocation of p-p38 after stimulation, and IPO7 homologous protein IPO8 participated in human dental pulp inflammation. This research aims to investigate whether IPO7 is involved in pulpitis and explore its underlying mechanisms. In the current study, we found the expression of IPO7 was increased in pulpitis tissue. In vitro, hDPCs treated with LPS to mimic the inflammatory environment, the expression of IPO7 was increased. Knockdown of IPO7 significantly inhibited the production of inflammatory cytokines and suppressed the p38 MAPK and NF-κB signaling pathways. Activating the p38 MAPK and NF-κB signaling pathways by the p38 activator and p65 activator reversed the inflammatory responses. IPO7 interacted with p-p38 under LPS stimulation in hDPCs. In addition, the increased binding between IPO7 and p-p38 is associated with the decreased binding ability of IPO7 to Sirt2. In conclusion, we found that IPO7 was highly expressed in pulpitis and played a vital role in modulating human dental pulp inflammation.
Collapse
Affiliation(s)
- Ziqiu Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yawei She
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
| |
Collapse
|
3
|
Zhang D, Zheng C, Zhu T, Yang F, Zhou Y. Identification of key module and hub genes in pulpitis using weighted gene co-expression network analysis. BMC Oral Health 2023; 23:2. [PMID: 36593446 PMCID: PMC9808982 DOI: 10.1186/s12903-022-02638-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pulpitis is a common disease mainly caused by bacteria. Conventional approaches of diagnosing the state of dental pulp are mainly based on clinical symptoms, thereby harbor deficiencies. The accurate and rapid diagnosis of pulpitis is important for choosing the suitable therapy. The study aimed to identify pulpits related key genes by integrating micro-array data analysis and systems biology network-based methods such as weighted gene co-expression network analysis (WGCNA). METHODS The micro-array data of 13 inflamed pulp and 11 normal pulp were acquired from Gene Expression Omnibus (GEO). WGCNA was utilized to establish a genetic network and categorize genes into diverse modules. Hub genes in the most associated module to pulpitis were screened out using high module group members (MM) methods. Pulpitis model in rat was constructed and iRoot BP plus was applied to cap pulp. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used for validation of hub genes. RESULTS WGCNA was established and genes were categorized into 22 modules. The darkgrey module had the highest correlation with pulpitis among them. A total of 5 hub genes (HMOX1, LOX, ACTG1, STAT3, GNB5) were identified. RT-qPCR proved the differences in expression levels of HMOX1, LOX, ACTG1, STAT3, GNB5 in inflamed dental pulp. Pulp capping reversed the expression level of HMOX1, LOX, ACTG1. CONCLUSION The study was the first to produce a holistic view of pulpitis, screen out and validate hub genes involved in pulpitis using WGCNA method. Pulp capping using iRoot BP plus could reverse partial hub genes.
Collapse
Affiliation(s)
- Denghui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Chen Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Tianer Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Fan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yiqun Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Metabolic Remodeling Impacts the Epigenetic Landscape of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:3490433. [PMID: 35422867 PMCID: PMC9005295 DOI: 10.1155/2022/3490433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation can dynamically adjust the gene expression program of cell fate decision according to the cellular microenvironment. Emerging studies have shown that metabolic activities provide fundamental components for epigenetic modifications and these metabolic-sensitive epigenetic events dramatically impact the cellular function of stem cells. Dental mesenchymal stem cells are promising adult stem cell resource for in situ injury repair and tissue engineering. In this review, we discuss the impact of metabolic fluctuations on epigenetic modifications in the oral and maxillofacial regions. The principles of the metabolic link to epigenetic modifications and the interaction between metabolite substrates and canonical epigenetic events in dental mesenchymal stem cells are summarized. The coordination between metabolic pathways and epigenetic events plays an important role in cellular progresses including differentiation, inflammatory responses, and aging. The metabolic-epigenetic network is critical for expanding our current understanding of tissue homeostasis and cell fate decision and for guiding potential therapeutic approaches in dental regeneration and infectious diseases.
Collapse
|
5
|
Yu F, Huo F, Li F, Zuo Y, Wang C, Ye L. Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption. Int J Oral Sci 2022; 14:6. [PMID: 35082271 PMCID: PMC8791990 DOI: 10.1038/s41368-022-00159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation-associated proteinase functions are key determinants of inflammatory stromal tissues deconstruction. As a specialized inflammatory pathological process, dental internal resorption (IR) includes both soft and hard tissues deconstruction within the dentin-pulp complex, which has been one of the main reasons for inflammatory tooth loss. Mechanisms of inflammatory matrix degradation and tissue resorption in IR are largely unclear. In this study, we used a combination of Cre-loxP reporter, flow cytometry, cell transplantation, and enzyme activities assay to mechanistically investigate the role of regenerative cells, odontoblasts (ODs), in inflammatory mineral resorption and matrices degradation. We report that inflamed ODs have strong capabilities of matrix degradation and tissue resorption. Traditionally, ODs are regarded as hard-tissue regenerative cells; however, our data unexpectedly present ODs as a crucial population that participates in IR-associated tissue deconstruction. Specifically, we uncovered that nuclear factor-kappa b (NF-κB) signaling orchestrated Tumor necrosis factor α (TNF-α)-induced matrix metalloproteinases (Mmps) and Cathepsin K (Ctsk) functions in ODs to enhance matrix degradation and tissue resorption. Furthermore, TNF-α increases Rankl/Opg ratio in ODs via NF-κB signaling by impairing Opg expression but increasing Rankl level, which utterly makes ODs cell line 17IIA11 (A11) become Trap+ and Ctsk+ multinucleated cells to perform resorptive actions. Blocking of NF-κB signaling significantly rescues matrix degradation and resorptive functions of inflamed ODs via repressing vital inflammatory proteinases Mmps and Ctsk. Utterly, via utilizing NF-κB specific small molecule inhibitors we satisfactorily attenuated inflammatory ODs-associated human dental IR in vivo. Our data reveal the underlying mechanisms of inflammatory matrix degradation and resorption via proteinase activities in IR-related pathological conditions.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Fengli Huo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Yin B, Ma Q, Zhao L, Song C, Wang C, Yu F, Shi Y, Ye L. Epigenetic Control of Autophagy Related Genes Transcription in Pulpitis via JMJD3. Front Cell Dev Biol 2021; 9:654958. [PMID: 34434926 PMCID: PMC8381646 DOI: 10.3389/fcell.2021.654958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is an intracellular self-cannibalization process delivering cytoplasmic components to lysosomes for digestion. Autophagy has been reported to be involved in pulpitis, but the regulation of autophagy during pulpitis progression is largely unknown. To figure out the epigenetic regulation of autophagy during pulpitis, we screened several groups of histone methyltransferases and demethylases in response to TNFα treatment. It was found JMJD3, a histone demethylase reducing di- and tri-methylation of H3K27, regulated the expression of several key autophagy genes via demethylation of H3K27me3 at the gene promoters. Our study highlighted the epigenetic regulation of autophagy genes during pulpitis, which will potentially provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingge Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingyi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
EZH2 Promotes Extracellular Matrix Degradation via Nuclear Factor-κB (NF-κB) and p38 Signaling Pathways in Pulpitis. Inflammation 2021; 44:1927-1936. [PMID: 33884563 DOI: 10.1007/s10753-021-01470-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Pulpitis is a complicated chronic inflammatory process which can be in a dynamic balance between damage and repair. The extracellular matrix plays an important regulatory role in wound healing and tissue repair. The aim of this study was to explore the role of the epigenetic mark, enhancer of zeste homolog 2 (EZH2) on the degradation of extracellular matrix during pulpitis. Quantitative polymerase chain reaction was used to assess the expression of matrix metalloproteinases (MMPs) and type I collagen in human dental pulp cells (HDPCs) upon EZH2 and EI1 (EZH2 inhibitor) stimulation. The mechanism of EZH2 affecting extracellular matrix was explored through quantitative polymerase chain reaction and Western blot. A rat model of dental pulp inflammation was established, and the expression of type I collagen in dental pulp under EZH2 stimulation was detected by immunohistochemical staining. EZH2 upregulated the expression of MMP-1, MMP-3, MMP-8, and MMP-10 and decreased the production of type I collagen in HDPCs, while EI1 had the opposite effect. EZH2 activated the nuclear factor-kappa B (NF-κB) and p38 signaling pathways in HDPCs, the inhibition of which reversed the induction of MMPs and the suppression of type I collagen. EZH2 can downregulate the type I collagen levels in an experimental model of dental pulpitis in rats. EZH2 promotes extracellular matrix degradation via nuclear factor-κB (NF-κB) and P38 signaling pathways in pulpitis. EZH2 can decrease the type I collagen levels in vivo and in vitro.
Collapse
|
8
|
Liu Y, Zhang Z, Li W, Tian S. PECAM1 Combines With CXCR4 to Trigger Inflammatory Cell Infiltration and Pulpitis Progression Through Activating the NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 8:593653. [PMID: 33425898 PMCID: PMC7786183 DOI: 10.3389/fcell.2020.593653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Pulpitis is a frequent bacterially driven inflammation featured with the local accumulation of inflammatory products in human dental pulps. A GEO dataset GSE16134 comprising data of inflamed dental pulp tissues was used for bioinformatics analyses. A protein-protein interaction (PPI) analysis suggested that chemokine receptor 4 (CXCR4) owned a high correlation with platelet endothelial cell adhesion molecule-1 (PECAM1). A rat model with pulpitis was established, and lipopolysaccharide (LPS)-induced human dental pulp fibroblasts (HDPFs) were used for in vitro experiments. Then, high expression of PECAM1 and CXCR4 was validated in the inflamed dental pulp tissues in rats and in LPS-induced HDPFs. Either downregulation of PECAM1 or CXCR4 suppressed inflammatory cell infiltration in inflamed tissues as well as the inflammation and apoptosis of HDPFs. A transcription factor myocyte-enhancer factor 2 (MEF2C) was predicted and validated as a positive regulator of either PECAM1 or CXCR4, which activated the NF-κB signaling pathway and promoted pulpitis progression. To sum up, this study suggested that MEF2C transcriptionally activates PECAM1 and CXCR4 to activate the B-cell and NF-κB signaling pathways, leading to inflammatory cell infiltration and pulpitis progression.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songbo Tian
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
10
|
Hu Y, Cheng L, Zhong W, Chen M, Zhang Q. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Med Sci Monit 2019; 25:9563-9571. [PMID: 31838482 PMCID: PMC6929537 DOI: 10.12659/msm.918491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock occurs when sepsis is associated with critically low blood pressure, and has a high mortality rate. This study aimed to undertake a bioinformatics analysis of gene expression profiles for risk prediction in septic shock. Material/Methods Two good quality datasets associated with septic shock were downloaded from the Gene Expression Omnibus (GEO) database, GSE64457 and GSE57065. Patients with septic shock had both sepsis and hypotension, and a normal control group was included. The differentially expressed genes (DEGs) were identified using OmicShare tools based on R. Functional enrichment of DEGs was analyzed using DAVID. The protein-protein interaction (PPI) network was established using STRING. Survival curves of key genes were constructed using GraphPad Prism version 7.0. Each putative central gene was analyzed by receiver operating characteristic (ROC) curves using MedCalc statistical software. Results GSE64457 and GSE57065 included 130 RNA samples derived from whole blood from 97 patients with septic shock and 33 healthy volunteers to obtain 975 DEGs, 455 of which were significantly down-regulated and 520 were significantly upregulated (P<0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified significantly enriched DEGs in four signaling pathways, MAPK, TNF, HIF-1, and insulin. Six genes, WDR82, ASH1L, NCOA1, TPR, SF1, and CREBBP in the center of the PPI network were associated with septic shock, according to survival curve and ROC analysis. Conclusions Bioinformatics analysis of gene expression profiles identified four signaling pathways and six genes, potentially representing molecular mechanisms for the occurrence, progression, and risk prediction in septic shock.
Collapse
Affiliation(s)
- Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lingxia Cheng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
11
|
Cai L, Zhan M, Li Q, Li D, Xu Q. DNA methyltransferase DNMT1 inhibits lipopolysaccharide‑induced inflammatory response in human dental pulp cells involving the methylation changes of IL‑6 and TRAF6. Mol Med Rep 2019; 21:959-968. [PMID: 31974603 DOI: 10.3892/mmr.2019.10860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/05/2019] [Indexed: 11/05/2022] Open
Abstract
Dental pulp inflammation is a pathological process characterized by local lesions in dental pulp and the accumulation of inflammatory mediators. DNA methylation of cytosine residues is a key epigenetic modification that is essential for gene transcription, and plays pivotal roles in inflammatory reactions and immune responses. However, the function of cytosine DNA methylation in the innate immune defense against the inflammation of dental pulp is poorly understood. To investigate the effect of DNA methylation in inflamed dental pulp upon innate immune responses, expression levels of the DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) in human dental pulp cells (hDPCs) after lipopolysaccharide (LPS) stimulation were evaluated by western blotting and reverse transcription‑quantitative (RT‑q) PCR. Only DNMT1 expression was decreased, while the transcription of inflammatory cytokines was increased. In the immune responses of LPS‑induced hDPCs, the results of RT‑qPCR and ELISA showed that DNMT1 knockdown promoted the production of the pro‑inflammatory cytokines, interleukin (IL)‑6 and IL‑8. Western blotting demonstrated that DNMT1 knockdown increased the phosphorylation levels of IKKα/β and p38 in the NF‑κB and MAPK signaling pathways, respectively. Furthermore, MeDIP and RT‑qPCR analysis demonstrated that the 5‑methylcytosine levels of the IL‑6 and TNF receptor‑associated factor 6 (TRAF6) promoters were significantly decreased in DNMT1‑deficient hDPCs. Taken together, these results indicated that the expression of DNMT1 was decreased after LPS stimulation in hDPCs. DNMT1 depletion increased LPS‑induced cytokine secretion, and activated NF‑κB and MAPK signaling; these mechanisms may involve the decreased methylation levels of the IL‑6 and TRAF6 gene promoters. This study emphasized the role of DNMT1‑dependent DNA methylation on the inflammation of LPS‑infected dental pulp and provides a new rationale for the investigation of the molecular mechanisms of inflamed dental pulps.
Collapse
Affiliation(s)
- Luhui Cai
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Minkang Zhan
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qimeng Li
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Di Li
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qiong Xu
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
12
|
Khorasani MMY, Hassanshahi G, Brodzikowska A, Khorramdelazad H. Role(s) of cytokines in pulpitis: Latest evidence and therapeutic approaches. Cytokine 2019; 126:154896. [PMID: 31670007 DOI: 10.1016/j.cyto.2019.154896] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Pulpitis is known as a typical inflammation of dental pulp tissue, and microorganisms of the oral microbiome are involved in this opportunistic infection. Studies indicated that several factors related to host response have a crucial role in pulpitis. Among these factors, inflammatory mediators of the immune system such as cytokines and chemokines contribute to pulpal defense mechanisms. A wide range of cytokines have been observed in dental pulp and these small molecules are able to trigger inflammation and participate in immune cell trafficking, cell proliferation, inflammation, and tissue damage in pulp space. Therefore, the aim of this review was to describe the role of cytokines in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Mohammad M Y Khorasani
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, Miodowa 18, 00-246 Warsaw, Poland
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|