1
|
Gilstrop Thompson M, Xu W, Moore B, Wang T, Sun N, Pewar H, Avent ND, Vernaza A, Acosta F, Saben JL, Souter V, Parmar S, Sengupta U, Altug Y, EmBree J, Cantos C, Kotwaliwale C, Babiarz J, Zimmermann B, Swenerton R, Meltzer JT. Clinical Validation of a Prenatal Cell-Free DNA Screening Test for Fetal RHD in a Large U.S. Cohort. Obstet Gynecol 2025; 145:211-216. [PMID: 39591628 PMCID: PMC11731044 DOI: 10.1097/aog.0000000000005794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE To present a large U.S. clinical validation of a next-generation sequencing-based, noninvasive prenatal cell-free DNA test for fetal RHD . METHODS This clinical validation study assessed the performance of a commercially available, next-generation sequencing-based cell-free DNA test for fetal RHD status. Samples that passed quality metrics were included if the patient had a previously reported cell-free DNA result for fetal aneuploidy, maternal RhD-negative serology, newborn RhD serology, and maternal RHD deletion or RHD-CE-D hybrid(r's) genotype. Dizygotic twin pregnancies were excluded. Maternal and fetal RHD genotypes were evaluated with prospective cell-free DNA next-generation sequencing analysis. At the time of analysis, investigators were blinded to fetal RhD status. RESULTS The cohort consisted of 655 pregnant patients with serologic results for RhD antigen. Patient demographics included a representative distribution of race and ethnicities in the RhD-negative U.S. population (74.0% White, 13.7% Hispanic, 7.0% Black, and 2.1% Asian). Cell-free DNA fetal RHD was not reported in two cases. There were zero false-negative cases; 356 of 356 fetuses were correctly identified as fetal RhD positive (sensitivity 100%, 95% CI, 98.9-100%). Of the 297 RhD-negative fetuses, 295 were correctly identified as RhD negative (specificity 99.3%, 95% CI, 97.6-99.8%). Of the fetuses with a negative RhD phenotype, the cell-free DNA test accurately identified three with the fetal RHD pseudogene ( RHDΨ) genotype. CONCLUSION Validation of this test in this large U.S. cohort of RhD-negative patients provides data on early and accurate noninvasive prenatal identification of fetal RHD genotype at 9 weeks of gestation or more. This test has the potential to assist patients and clinicians in the prevention and management of RhD alloimmunization.
Collapse
Affiliation(s)
- Marisa Gilstrop Thompson
- Delaware Center for Maternal Fetal Medicine, Newark, Delaware; and Natera, Inc., San Carlos, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Clausen FB. Antenatal RHD screening to guide antenatal anti-D immunoprophylaxis in non-immunized D- pregnant women. Immunohematology 2024; 40:15-27. [PMID: 38739027 DOI: 10.2478/immunohematology-2024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In pregnancy, D- pregnant women may be at risk of becoming immunized against D when carrying a D+ fetus, which may eventually lead to hemolytic disease of the fetus and newborn. Administrating antenatal and postnatal anti-D immunoglobulin prophylaxis decreases the risk of immunization substantially. Noninvasive fetal RHD genotyping, based on testing cell-free DNA extracted from maternal plasma, offers a reliable tool to predict the fetal RhD phenotype during pregnancy. Used as a screening program, antenatal RHD screening can guide the administration of antenatal prophylaxis in non-immunized D- pregnant women so that unnecessary prophylaxis is avoided in those women who carry a D- fetus. In Europe, antenatal RHD screening programs have been running since 2009, demonstrating high test accuracies and program feasibility. In this review, an overview is provided of current state-of-the-art antenatal RHD screening, which includes discussions on the rationale for its implementation, methodology, detection strategies, and test performance. The performance of antenatal RHD screening in a routine setting is characterized by high accuracy, with a high diagnostic sensitivity of ≥99.9 percent. The result of using antenatal RHD screening is that 97-99 percent of the women who carry a D- fetus avoid unnecessary prophylaxis. As such, this activity contributes to avoiding unnecessary treatment and saves valuable anti-D immunoglobulin, which has a shortage worldwide. The main challenges for a reliable noninvasive fetal RHD genotyping assay are low cell-free DNA levels, the genetics of the Rh blood group system, and choosing an appropriate detection strategy for an admixed population. In many parts of the world, however, the main challenge is to improve the basic care for D- pregnant women.
Collapse
Affiliation(s)
- Frederik B Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Duan H, Li J, Jiang Z, Shi X, Hu Y. Noninvasive screening of fetal RHD genotype in Chinese pregnant women with serologic RhD-negative phenotype. Transfusion 2023; 63:2152-2158. [PMID: 37698267 DOI: 10.1111/trf.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Noninvasive fetal RHD genotyping has been provided to nonimmunized RhD-negative pregnant women to guide anti-D prophylaxis. Among the Chinese, more than 30% of the RhD-negative phenotype is associated with variant RHD alleles, which would limit the accuracy of fetal RHD status prediction; thus, more targeting and proper programs need to be developed. STUDY DESIGN AND METHODS Fluorescence quantitative polymerase chain reaction PCR (qPCR) or Sanger sequencing on all RHD exons was used to detect maternal RHD genotypes. For pregnant women with RHD*01N.01 or RHD*01N.03 alleles, the presence of RHD exons 5 and 10 in cell-free DNA was determined by qPCR. For pregnant women with the RHD(1227G>A) allele, high-throughput sequencing on exon 9 of the RHD gene and RHCE gene was used to predict fetal RhD phenotype. RESULTS Among 65 cases of Chinese pregnant women with the serologic RhD-negative phenotype, three major genotypes were identified: RHD*01N.01/RHD*01N.01 (61.5%), RHD*01N.01/RHD(1227G>A) or RHD*01N.03/RHD(1227G>A) (20%), and RHD*01N.01/RHD*01N.03 (13.8%), along with three cases of minor genotypes (4.6%). For 43 pregnant women with the RHD*01N.01 or RHD*01N.03 alleles, qPCR on maternal cell-free DNA yielded a 98.5% (42/43) accuracy rate and 100% successful prediction rate. High-throughput sequencing was successfully used to predict fetal RhD phenotypes for 13 pregnant women with RHD(1227G>A). CONCLUSION On the basis of maternal RHD genotyping, fetal genotyping through qPCR or high-throughput sequencing can improve the accuracy and success rate of prenatal fetal RhD phenotype prediction among Chinese pregnant women. It plays a potential role in guiding anti-D prophylaxis and pregnancy management in Chinese pregnant women.
Collapse
Affiliation(s)
- Honglei Duan
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Li
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zihan Jiang
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaohong Shi
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Gajic-Veljanoski O, Li C, Schaink AK, Guo J, Shehata N, Charames GS, de Vrijer B, Clarke G, Pechlivanoglou P, Okun N, Kandel R, Dooley J, Higgins C, Ng V, Sikich N. Cost-effectiveness of noninvasive fetal RhD blood group genotyping in nonalloimmunized and alloimmunized pregnancies. Transfusion 2022; 62:1089-1102. [PMID: 35170037 DOI: 10.1111/trf.16826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND We sought to determine the cost-effectiveness of noninvasive fetal RhD blood group genotyping in nonalloimmunized and alloimmunized pregnancies in Canada. STUDY DESIGN AND METHODS We developed two probabilistic state-transition (Markov) microsimulation models to compare fetal genotyping followed by targeted management versus usual care (i.e., universal Rh immunoglobulin [RhIG] prophylaxis in nonalloimmunized RhD-negative pregnancies, or universal intensive monitoring in alloimmunized pregnancies). The reference case considered a healthcare payer perspective and a 10-year time horizon. Sensitivity analysis examined assumptions related to test cost, paternal screening, subsequent pregnancies, other alloantibodies (e.g., K, Rh c/C/E), societal perspective, and lifetime horizon. RESULTS Fetal genotyping in nonalloimmunized pregnancies (at per-sample test cost of C$247/US$311) was associated with a slightly higher probability of maternal alloimmunization (22 vs. 21 per 10,000) and a reduced number of RhIG injections (1.427 vs. 1.795) than usual care. It was more expensive (C$154/US$194, 95% Credible Interval [CrI]: C$139/US$175-C$169/US$213) and had little impact on QALYs (0.0007, 95%CrI: -0.01-0.01). These results were sensitive to the test cost (threshold achieved at C$88/US$111), and inclusion of paternal screening. Fetal genotyping in alloimmunized pregnancies (at test cost of C$328/US$413) was less expensive (-C$6280/US$7903, 95% CrI: -C$6325/US$7959 to -C$6229/US$7838) and more effective (0.19 QALYs, 95% CrI 0.17-0.20) than usual care. These cost savings remained robust in sensitivity analyses. DISCUSSION Noninvasive fetal RhD genotyping saves resources and represents good value for the management of alloimmunized pregnancies. If the cost of genotyping is substantially decreased, the targeted intervention can become a viable option for nonalloimmunized pregnancies.
Collapse
Affiliation(s)
- Olga Gajic-Veljanoski
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Chunmei Li
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Alexis K Schaink
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Jennifer Guo
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Nadine Shehata
- Mount Sinai Hospital (Division of Hematology), and Department of Medicine, Department of Laboratory Management and Evaluation, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - George S Charames
- Mount Sinai Hospital (Department of Pathology and Laboratory Medicine), and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Barbra de Vrijer
- Western University, Schulich School of Medicine and Dentistry/Department of Obstetrics and Gynaecology, and London Health Sciences Centre, London, Ontario, Canada
| | - Gwen Clarke
- Laboratory Services, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Petros Pechlivanoglou
- Child Health Evaluative Sciences, The Hospital for Sick Children, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Nanette Okun
- Sunnybrook Health Sciences Centre (Maternal-Fetal Medicine Division), and Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Rita Kandel
- Mount Sinai Hospital (Department of Pathology and Laboratory Medicine), and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Dooley
- Department of Family Medicine, The Northern Ontario School of Medicine and Sioux Lookout Menoyawin Health Centre, Sioux Lookout, Ontario, Canada
| | - Caroline Higgins
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Vivian Ng
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| | - Nancy Sikich
- Ontario Health (Clinical Institutes and Quality Programs/Health Technology Assessment), Toronto, Ontario, Canada
| |
Collapse
|