1
|
Yu X, Wu W, Hao J, Zhou Y, Yu D, Ding W, Zhang X, Liu G, Wang J. Ginger protects against vein graft remodeling by precisely modulating ferroptotic stress in vascular smooth muscle cell dedifferentiation. J Pharm Anal 2025; 15:101053. [PMID: 39974619 PMCID: PMC11835576 DOI: 10.1016/j.jpha.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 02/21/2025] Open
Abstract
Vein graft (VG) failure (VGF) is associated with VG intimal hyperplasia, which is characterized by abnormal accumulation of vascular smooth muscle cells (VSMCs). Most neointimal VSMCs are derived from pre-existing VSMCs via a process of VSMC phenotypic transition, also known as dedifferentiation. There is increasing evidence to suggest that ginger or its bioactive ingredients may block VSMC dedifferentiation, exerting vasoprotective functions; however, the precise mechanisms have not been fully characterized. Therefore, we investigated the effect of ginger on VSMC phenotypic transition in VG remodeling after transplantation. Ginger significantly inhibited neointimal hyperplasia and promoted lumen (L) opening in a 3-month VG, which was primarily achieved by reducing ferroptotic stress. Ferroptotic stress is a pro-ferroptotic state. Contractile VSMCs did not die but instead gained a proliferative capacity and switched to the secretory type, forming neointima (NI) after vein transplantation. Ginger and its two main vasoprotective ingredients (6-gingerol and 6-shogaol) inhibit VSMC dedifferentiation by reducing ferroptotic stress. Network pharmacology analysis revealed that 6-gingerol inhibits ferroptotic stress by targeting P53, while 6-shogaol inhibits ferroptotic stress by targeting 5-lipoxygenase (Alox5), both promoting ferroptosis. Furthermore, both ingredients co-target peroxisome proliferator-activated receptor gamma (PPARγ), decreasing PPARγ-mediated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) expression. Nox1 promotes intracellular reactive oxygen species (ROS) production and directly induces VSMC dedifferentiation. In addition, Nox1 is a ferroptosis-promoting gene that encourages ferroptotic stress production, indirectly leading to VSMC dedifferentiation. Ginger, a natural multi-targeted ferroptotic stress inhibitor, finely and effectively prevents VSMC phenotypic transition and protects against venous injury remodeling.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jingjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxin Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Deyang Yu
- Department of Emergency Surgery, Qingdao Central Hospital, Qingdao, Shandong, 266071, China
| | - Wei Ding
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Gaoli Liu
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
2
|
Sardar H, Hadi F, Alam W, Halawani IF, Alzahrani FM, Saleem RA, Cerqua I, Khan H, Capasso R. Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon 2024; 10:e37911. [PMID: 39323861 PMCID: PMC11422034 DOI: 10.1016/j.heliyon.2024.e37911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Vigna unguiculata, belonging to the Fabaceae family, commonly known as cowpea is an important edible legume, distributed mainly across the African and Asian countries. Traditionally, the plant has an outstanding background for the management of multiple diseases, animal feeding and human consumption. Objective This review aims to mainly focus on the traditional applications, pharmacological activities, phytochemistry as well as nutritious composition of the V. unguiculata. Methods Data present in the literature on the V. unguiculata, were collected from major scientific databases including Science Direct, SpringerLink, Google Scholar, Medline Plus, Web of Science, PubMed and Elsevier. Results Number of compounds have been isolated including flavonoids, steroids, alkaloids, phenolic compounds, saponins, fatty acids, tannins, carbohydrates, vitamins, amino acids, carotenoids and fibers from various parts of plant. These compounds exhibit widespread pharmacological potentials both in-vitro and in-vivo including anthelmintic, antibacterial, antinociceptive, thrombolytic, antidiabetic, hypocholestrolemic and antiatherogenic effect, antimicrobial, anti-sickling, antioxidant, anti-covid activity, anticancer and neurobehavioral activities. These compounds have strong pharmacological background and might be responsible for the traditional uses of this plant that are not investigated. Conclusion It is concluded that V. unguiculata possessed strong pharmacological, nutritious and phytochemical potential, therefore, it is strongly recommended for additional comprehensive investigations in order to determine its clinical utility.
Collapse
Affiliation(s)
- Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Fazal Hadi
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Ibrahim F. Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rimah Abdullah Saleem
- Haematology and immunology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah, 21961, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ida Cerqua
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| |
Collapse
|
3
|
Ferreira DM, de Oliveira NM, Lopes L, Machado J, Oliveira MB. Potential Therapeutic Properties of the Leaf of Cydonia Oblonga Mill. Based on Mineral and Organic Profiles. PLANTS (BASEL, SWITZERLAND) 2022; 11:2638. [PMID: 36235504 PMCID: PMC9573453 DOI: 10.3390/plants11192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
Leaf extract of Cydonia Oblonga Mill. is interesting for further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of green (October), yellow (November), and brown (December) quince leaves collected in the region of Pinhel, Portugal. Mineral analysis determined the measurements of the levels of several macro- and micro-elements. Organic analysis assessed the moisture content, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Mineral analysis was based on ICP-MS techniques, while the profiles of vitamin E and FA relied on HPLC-DAD-FLD and GC-FID techniques, respectively. Moisture content was determined through infrared hygrometry and TPC was determined by spectrophotometric methods. Regarding the mineral content, calcium, magnesium, and iron were the most abundant minerals. Concerning organic analysis, all leaf samples showed similar moisture content, while the TPC of gallic acid equivalents (GAE) and total vitamin E content, the most predominant of which was the α-tocopherol isomer, showed significant variations between green-brown and yellow leaves. FA composition in all leaf samples exhibited higher contents of SFA and PUFA than MUFA, with a predominance of palmitic and linolenic acids. Organic and inorganic analysis of quince leaves allow for the prediction of adequate physiological properties, mainly cardiovascular, pulmonary, and immunological defenses, which with our preliminary in silico studies suggest an excellent supplement to complementary therapy, including drastic pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
ALIXANDRE TAMNATAF, SOUSA RENATOP, GOMES BRUNOS, SILVA ARÊTHAH, SOUSA NETO BENEDITOP, SOUSA ELCILENEA, LIMA MARLUCEP, LOPES EVERTONM, PIAUILINO CELYANEA, NASCIMENTO REJANET, REIS FILHO ANTÔNIOC, ALMEIDA FERNANDAR, OLIVEIRA FRANCISCOA, CHAVES MARIANAH, COSTA LUCIANAM, ALVES MICHELMMORAES, COSTA AMILTONP. Samanea tubulosa Benth. (Fabaceae): Antinociceptive effect on acute pain in mice: K+ATP channel and opioid activity. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|