1
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
2
|
Tang BB, Su CX, Wen N, Zhang Q, Chen JH, Liu BB, Wang YQ, Huang CQ, Hu YL. FMT and TCM to treat diarrhoeal irritable bowel syndrome with induced spleen deficiency syndrome- microbiomic and metabolomic insights. BMC Microbiol 2024; 24:433. [PMID: 39455910 PMCID: PMC11515126 DOI: 10.1186/s12866-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D) is a functional bowel disease with diarrhea, and can be associated with common spleen deficiency syndrome of the prevelent traditional Chinese medicine (TCM) syndrome. Fecal microbiota transplantation (FMT) could help treating IBS-D, but may provide variable effects. Our study evaluated the efficacy of TCM- shenling Baizhu decoction and FMT in treating IBS-D with spleen deficiency syndrome, with significant implications on gut microbiome and serum metabolites. METHODS The new borne rats were procured from SPF facility and separated as healthy (1 group) and IBS-D model ( 3 groups) rats were prepared articially using mother's separation and senna leaf treatment. 2 groups of IBS-D models were further treated with TCM- shenling Baizhu decoction and FMT. The efficacy was evaluated by defecation frequency, bristol stool score, and intestinal tight junction proteins (occludin-1 and claudin-1) expression. Microbiomic analysis was conducted using 16 S rRNA sequencing and bioinformatics tools. Metabolomics were detected in sera of rats by LC-MS and annotated by using KEGG database. RESULTS Significant increment in occludin-1 and claudin-1 protein expression alleviated the diarrheal severity in IBS-D rats (P < 0.05) after treatment with FMT and TCM. FMT and TCM altered the gut microbiota and regulated the tryptophan metabolism, steroid hormone biosynthesis and glycerophospholipid metabolism of IBS-D rats with spleen deficiency syndrome.The microbial abundance were changed in each case e.g., Monoglobus, Dubosiella, and Akkermansia and othe metabolic profiles. CONCLUSION FMT and TCM treatment improved the intestinal barrier function by regulating gut microbiota and improved metabolic pathways in IBS-D with spleen deficiency syndrome.
Collapse
Affiliation(s)
- Bin-Bin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng-Xia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Na Wen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian-Hui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Liu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-Qing Wang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Qun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yun-Lian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
- Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
3
|
Yu J, Liu H, Xiong J, Qu S, Xie X, Zhao H, Zhu Z, Wang Y, Han Y. Non-target metabolomics unravels the effect and mechanism of Lianpu Drink on spleen-stomach damp-heat syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124281. [PMID: 39197411 DOI: 10.1016/j.jchromb.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Lianpu Drink (LPY) is a classic prescription for treating spleen-stomach damp-heat syndrome (SSDHS), known for its ability to clear heat and eliminate dampness. However, the underlying mechanisms of LPY in treating SSDHS remain unclear. OBJECTIVES This study aims to use non-target metabolomics to unravel the effects and mechanisms of LPY on SSDHS. METHODS A metabolomics technique based on ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to identify the endogenous small-molecule metabolites in the urine of SSDHS model rats and find the metabolites associated with the LPY treatment of SSDHS. Furthermore, a network pharmacological analysis and molecular docking experiments were used to screen and validate the key metabolic pathways regulated by LPY. RESULTS LPY exerted therapeutic effects on SSDHS by increasing the levels of motilin and gastrin, reducing the rectal temperature, alleviating the pathological changes in gastric and colonic tissues, and regulating the metabolic pattern in SSDHS rats. A total of 25 different metabolites, including L-histidine, citric acid and isocitric acid, were identified as the potential biomarkers for SSDHS via metabolomics. Among them, 11 metabolites were substantially reversed by LPY, including L-histidine, citric acid, isocitric acid, pantothenic acid, homovanillic acid sulfate, hippuric acid, indole-3-carboxilic acid-O-sulphate, 6-hydroxy-5-methoxyindole glucuronide, 2-phenylethan-ol glucuronide, 3-hydroxydodecanedioic acid and 3-methoxy-4-hydroxy-phenylethyleneglyclol sulfate. The results of network pharmacological analysis and molecular docking experiments validated that LPY ameliorated SSDHS by regulating the citrate cycle and histidine metabolism. CONCLUSION We preliminarily investigated the effects and mechanisms of LPY on SSDHS at the level of endogenous small-molecule metabolites. Furthermore, this study provides a novel perspective for objectively evaluating the therapeutic effects, and exploring the mechanisms of Chinese medicinal formulas on SSDHS.
Collapse
Affiliation(s)
- Jingbo Yu
- Science & Technology Innovation Center, National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Henan Liu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiarong Xiong
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shanhe Qu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xin Xie
- Science & Technology Innovation Center, National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongqing Zhao
- Science & Technology Innovation Center, National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengqing Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhong Wang
- Science & Technology Innovation Center, National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yue Han
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Chen XL, Jiang MZ. [Research progress of metabolomics in children with irritable bowel syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:989-994. [PMID: 39267517 PMCID: PMC11404471 DOI: 10.7499/j.issn.1008-8830.2404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by symptoms such as abdominal pain, diarrhea, constipation, and indigestion. Given its unclear etiology and pathogenesis, and the absence of specific biomarkers, clinical diagnosis and treatment of IBS continue to pose significant challenges. In recent years, metabolomics technology, known for its non-invasive, high-throughput, high-precision, and highly reproducible features, has been widely applied in the diagnosis, treatment, and prognosis of various diseases. Therefore, metabolomics technology is expected to offer novel insights and methodologies for the biological mechanism research, diagnosis, and treatment of IBS. This article reviews recent advancements in the application of metabolomics to IBS, exploring its potential value in the clinical diagnosis and treatment of children with this condition.
Collapse
Affiliation(s)
- Xiao-Long Chen
- Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
| | | |
Collapse
|
5
|
Gao Y, Ding P, Wang J, Zhang C, Ji G, Wu T. Application of metabolomics in irritable bowel syndrome in recent 5 years. Int Immunopharmacol 2023; 124:110776. [PMID: 37603947 DOI: 10.1016/j.intimp.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders worldwide, characterized by chronic abdominal pain or discomfort and altered bowel habits. To date, the exact pathogenesis of IBS remains elusive, but is clearly multifactorial, including environmental and host factors. However, the management of patients with IBS is challenging and the current diagnostic and therapeutic modalities have unsatisfactory outcomes. Therefore, it is important to develop more effective methods to diagnose IBS early. Metabolomics studies the metabolites most closely related to patient characteristics, which can provide useful clinical biomarkers that can be applied to IBS and may open up new diagnostic approaches. Traditional Chinese medicine (TCM) can play a role in improving symptoms and protecting target organs, but its mechanism needs to be studied in depth. In this review, based on PubMed/MEDLINE and other databases, we searched metabolomics studies related to IBS in the past 5 years, including those related to clinical studies and animal studies, as well as literatures on TCM interventions in IBS, to provide an updated overview of the application of metabolomics to the diagnosis and treatment of IBS and the improvement of IBS by TCM.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Yu X, Zheng Q, He Y, Yu D, Chang G, Chen C, Bi L, Lv J, Zhao M, Lin X, Zhu L. Associations of Gut Microbiota and Fatty Metabolism With Immune Thrombocytopenia. Front Med (Lausanne) 2022; 9:810612. [PMID: 35665326 PMCID: PMC9160917 DOI: 10.3389/fmed.2022.810612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To determine whether gut microbiota, fatty metabolism and cytokines were associated with immune thrombocytopenia (ITP). Methods In total, 29 preliminarily diagnosed ITP patients and 33 healthy volunteers were enrolled. Fecal bacterial were analyzed based on 16S rRNA sequencing. Plasma cytokines and motabolites were analyzed using flow cytometry and liquid chromatography-mass spectrometry (LC-MS), respectively. Results Bacteroides, Phascolarctobacterium, and Lactobacillus were enriched at the genus level in ITP patients, while Ruminococcaceae UCG-002, Eubacterium coprostanoligeues, Megamonas, and Lachnospiraceae NC2004 were depleted. At the phylum level, the relative abundance of Proteobacteria and Chloroflexi increased in ITP patients, while Firmicutes, Actinobacteria, and the Firmicutes/Bacteroidetes ratio decreased. Plasma levels of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-12-epi-leukotriene B4 (6t,12e-LTB4), and resolvin D2 (RvD2) were upregulated, and stachydrine, dowicide A, dodecanoylcarnitine were downregulated in ITP patients. Furthermore, RvD2 is positively correlated with order Bacteroidetes VC2.1 Bac22, 5-HETE is positively correlated with genus Azospirillum, and 6t,12e-LTB4 is positively correlated with genus Cupriavidus. In addition, stachydrine is positively correlated with family Planococcaceae, dowicide A is positively correlated with class MVP-15, and dodecanoylcarnitine is positively correlated with order WCHB1-41. Plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were upregulated in ITP patients. Conclusion Our study revealed a relationship between microbiota and fatty metabolism in ITP. Gut microbiota may participate in the pathogenesis of ITP through affecting cytokine secretion, interfering with fatty metabolism.
Collapse
Affiliation(s)
- Xiaomin Yu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingyun Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yun He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dandan Yu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guolin Chang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Chen
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Laixi Bi
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Lv
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Misheng Zhao
- Department of Clinical Laboratory, Wenzhou People’s Hospital, Wenzhou, China
- *Correspondence: Misheng Zhao,
| | - Xiangyang Lin
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Xiangyang Lin,
| | - Liqing Zhu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Liqing Zhu,
| |
Collapse
|
7
|
Sankararaman S, Velayuthan S, Chen Y, Robertson J, Sferra TJ. Role of Traditional Chinese Herbal Medicines in Functional Gastrointestinal and Motility Disorders. Curr Gastroenterol Rep 2022; 24:43-51. [PMID: 35353338 DOI: 10.1007/s11894-022-00843-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Traditional Chinese medicine (TCM) has been in use for thousands of years in Asian countries and is rapidly gaining popularity in the Western world. Among different forms of TCM, the traditional Chinese herbal therapy and acupuncture are the most popular modalities. Here, we review the fundamentals of TCMs for clinicians practicing in the West and will also detail the evidence-based utility of Chinese herbal medicine in the management of functional gastrointestinal disorders (FGIDs). RECENT FINDINGS In the recent decades, the popularity and usage of traditional Chinese herbal medicine in FGIDs is increasing in the West. TCMs are commonly utilized by many patients with FGIDs as the conventional therapies do have limitations such as cost, inadequate symptom control and adverse effects. The unfamiliarity of TCM philosophy among clinicians in the West, and shortage of traditional Chinese herbalists remain. The philosophy of TCM is complex and entirely different from the Western medical concepts and is difficult to understand for a clinician trained in the West. Further traditional Chinese herbal therapies are often viewed skeptically by the clinicians in the West for various reasons such as lack of scientific rigor, inconsistencies in the constituents of herbal products, and also concerns due to adverse herb effects. Future clinical trials in FGIDs should focus on herb product quality, herb-drug interactions, and standardized criteria for diagnosis and management outcomes.
Collapse
Affiliation(s)
- Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, 44122, USA.
| | - Sujithra Velayuthan
- Division of Pediatric Gastroenterology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, 44122, USA
| | - Youqin Chen
- Division of Pediatric Gastroenterology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, 44122, USA
| | - Jason Robertson
- Seattle Institute of East Asian Medicine, 226 South Orcas Street, Seattle, WA, 98101, USA
| | - Thomas J Sferra
- Division of Pediatric Gastroenterology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, 44122, USA
| |
Collapse
|