1
|
Zou X, Zhang H, Wu Y, Li R, Gao X, Wang A, Zhao X, Yang X, Shu H, Qi H, Fu Z, Yuan S, Ma Y, Yang L, Shang Y, Zhao Z. Physiologic Comparison of Airway Pressure Release Ventilation and Low Tidal Volume Ventilation in ARDS: A Randomized Controlled Trial. Chest 2025; 167:453-465. [PMID: 39299389 DOI: 10.1016/j.chest.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The physiologic effects of different ventilation strategies on patients with ARDS need to be better understood. RESEARCH QUESTION In patients with ARDS receiving controlled mandatory ventilation, does airway pressure release ventilation (APRV) improve lung ventilation/perfusion (V˙/Q˙) matching and ventilation homogeneity compared with low tidal volume (LTV) ventilation? STUDY DESIGN AND METHODS This study was a single-center randomized controlled trial. Patients with moderate to severe ARDS were ventilated randomly with APRV or LTV ventilation. Electrical impedance tomography (EIT) was used to assess lung ventilation and perfusion. EIT-based data and clinical variables related to respiratory and hemodynamic conditions were collected shortly before randomization (0 hours) and at 12 and 24 hours after randomization. RESULTS A total of 40 patients were included and randomized to the APRV or LTV ventilation group (20 per group). During the 24-hour trial period, patients receiving APRV exhibited significantly increased dorsal ventilation (difference value [24 hours minus 0 hours]: median, 10.82% [interquartile range (IQR), 2.62%-13.74%] vs 0.12% [IQR, -2.81% to 4.76%]; P = .017), decreased dorsal shunt (median, -4.67% [IQR, -6.83% to 0.59%] vs 1.73% [IQR, -0.95% to 5.53%]; P = .008), and increased dorsal V˙/Q˙ matching (median, 4.13% [IQR, -0.26% to 10.47%] vs -3.29% [IQR, -5.05% to 2.81%]; P = .026) than those receiving LTV ventilation. No difference in ventral dead space was observed between study groups (P = .903). Additionally, two indicators of ventilation distribution heterogeneity, global inhomogeneity index and center of ventilation, significantly decreased and significantly increased, respectively, in the APRV group compared with the LTV ventilation group. Patients receiving APRV showed significantly higher Pao2 to Fio2 ratio, higher respiratory system static compliance and lower Paco2 than those receiving LTV ventilation at 24 hours. The cardiac output was comparable in both groups. INTERPRETATION APRV, as compared with LTV ventilation, could recruit dorsal region, reduce dorsal shunt, increase dorsal V˙/Q˙ matching, and improve ventilation homogeneity of the lungs, leading to better gas exchange and respiratory system static compliance in patients with moderate to severe ARDS. CLINICAL TRIAL REGISTRY ClinicalTrials.gov; No.: NCT05767125; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongling Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongran Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuehui Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Azhen Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Qi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yilei Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Yang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
2
|
Su J, Tie X, Chen Y, Zou T, Yin W. Successful application of airway pressure release ventilation in a child with severe acute respiratory distress syndrome induced by trauma: a case report. BMC Pulm Med 2024; 24:79. [PMID: 38347503 PMCID: PMC10863202 DOI: 10.1186/s12890-024-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Trauma has been identified as one of the risk factors for acute respiratory distress syndrome. Respiratory support can be further complicated by comorbidities of trauma such as primary or secondary lung injury. Conventional ventilation strategies may not be suitable for all trauma-related acute respiratory distress syndrome. Airway pressure release ventilation has emerged as a potential rescue method for patients with acute respiratory distress syndrome and hypoxemia refractory to conventional mechanical ventilation. However, there is a lack of research on the use of airway pressure release ventilation in children with trauma-related acute respiratory distress syndrome. We report a case of airway pressure release ventilation applied to a child with falling injury, severe acute respiratory distress syndrome, hemorrhagic shock, and bilateral hemopneumothorax. We hope this case report presents a potential option for trauma-related acute respiratory distress syndrome and serves as a basis for future research. CASE PRESENTATION A 15-year-old female with falling injury who developed severe acute respiratory distress syndrome, hemorrhagic shock, and bilateral hemopneumothorax was admitted to the surgical intensive care unit. She presented refractory hypoxemia despite the treatment of conventional ventilation with deep analgesia, sedation, and muscular relaxation. Lung recruitment was ineffective and prone positioning was contraindicated. Her oxygenation significantly improved after the use of airway pressure release ventilation. She was eventually extubated after 12 days of admission and discharged after 42 days of hospitalization. CONCLUSION Airway pressure release ventilation may be considered early in the management of trauma patients with severe acute respiratory distress syndrome when prone position ventilation cannot be performed and refractory hypoxemia persists despite conventional ventilation and lung recruitment maneuvers.
Collapse
Affiliation(s)
- Jing Su
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Tie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Chen
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tongjuan Zou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Grotberg JC, Reynolds D, Kraft BD. Management of severe acute respiratory distress syndrome: a primer. Crit Care 2023; 27:289. [PMID: 37464381 DOI: 10.1186/s13054-023-04572-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
This narrative review explores the physiology and evidence-based management of patients with severe acute respiratory distress syndrome (ARDS) and refractory hypoxemia, with a focus on mechanical ventilation, adjunctive therapies, and veno-venous extracorporeal membrane oxygenation (V-V ECMO). Severe ARDS cases increased dramatically worldwide during the Covid-19 pandemic and carry a high mortality. The mainstay of treatment to improve survival and ventilator-free days is proning, conservative fluid management, and lung protective ventilation. Ventilator settings should be individualized when possible to improve patient-ventilator synchrony and reduce ventilator-induced lung injury (VILI). Positive end-expiratory pressure can be individualized by titrating to best respiratory system compliance, or by using advanced methods, such as electrical impedance tomography or esophageal manometry. Adjustments to mitigate high driving pressure and mechanical power, two possible drivers of VILI, may be further beneficial. In patients with refractory hypoxemia, salvage modes of ventilation such as high frequency oscillatory ventilation and airway pressure release ventilation are additional options that may be appropriate in select patients. Adjunctive therapies also may be applied judiciously, such as recruitment maneuvers, inhaled pulmonary vasodilators, neuromuscular blockers, or glucocorticoids, and may improve oxygenation, but do not clearly reduce mortality. In select, refractory cases, the addition of V-V ECMO improves gas exchange and modestly improves survival by allowing for lung rest. In addition to VILI, patients with severe ARDS are at risk for complications including acute cor pulmonale, physical debility, and neurocognitive deficits. Even among the most severe cases, ARDS is a heterogeneous disease, and future studies are needed to identify ARDS subgroups to individualize therapies and advance care.
Collapse
Affiliation(s)
- John C Grotberg
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Daniel Reynolds
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Bryan D Kraft
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
4
|
Bajon F, Gauthier V. Management of refractory hypoxemia using recruitment maneuvers and rescue therapies: A comprehensive review. Front Vet Sci 2023; 10:1157026. [PMID: 37065238 PMCID: PMC10098094 DOI: 10.3389/fvets.2023.1157026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Refractory hypoxemia in patients with acute respiratory distress syndrome treated with mechanical ventilation is one of the most challenging conditions in human and veterinary intensive care units. When a conventional lung protective approach fails to restore adequate oxygenation to the patient, the use of recruitment maneuvers and positive end-expiratory pressure to maximize alveolar recruitment, improve gas exchange and respiratory mechanics, while reducing the risk of ventilator-induced lung injury has been suggested in people as the open lung approach. Although the proposed physiological rationale of opening and keeping open previously collapsed or obstructed airways is sound, the technique for doing so, as well as the potential benefits regarding patient outcome are highly controversial in light of recent randomized controlled trials. Moreover, a variety of alternative therapies that provide even less robust evidence have been investigated, including prone positioning, neuromuscular blockade, inhaled pulmonary vasodilators, extracorporeal membrane oxygenation, and unconventional ventilatory modes such as airway pressure release ventilation. With the exception of prone positioning, these modalities are limited by their own balance of risks and benefits, which can be significantly influenced by the practitioner's experience. This review explores the rationale, evidence, advantages and disadvantages of each of these therapies as well as available methods to identify suitable candidates for recruitment maneuvers, with a summary on their application in veterinary medicine. Undoubtedly, the heterogeneous and evolving nature of acute respiratory distress syndrome and individual lung phenotypes call for a personalized approach using new non-invasive bedside assessment tools, such as electrical impedance tomography, lung ultrasound, and the recruitment-to-inflation ratio to assess lung recruitability. Data available in human medicine provide valuable insights that could, and should, be used to improve the management of veterinary patients with severe respiratory failure with respect to their intrinsic anatomy and physiology.
Collapse
|
5
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|