1
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Hu Z, Xu Y, Li J, Zhu Z, Qiu Y, Liu Z. Bioinformatics Analysis and Experimental Verification Identify Downregulation of COL27A1 in Poor Segmental Congenital Scoliosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2616827. [PMID: 35186112 PMCID: PMC8849967 DOI: 10.1155/2022/2616827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Congenital scoliosis (CS) represents the congenital defect disease, and poor segmental congenital scoliosis (PSCS) represents one of its types. Delayed intervention can result in disability and paralysis. In this study, we would identify the core biomarkers for PSCS progression through bioinformatics analysis combined with experimental verification. METHODS This work obtained the GSE11854 expression dataset associated with somite formation in the GEO database, which covers data of 13 samples. Thereafter, we utilized the edgeR of the R package to obtain DEGs in this dataset. Then, GO annotation, KEGG analyses, and DO annotation of DEGs were performed by "clusterProfiler" of the R package. This study performed LASSO regression for screening the optimal predicting factors for somite formation. Through RNA sequencing based on peripheral blood samples from healthy donors and PSCS cases, we obtained the RNA expression patterns and screen out DEGs using the R package DESeq2. The present work analyzed COL27A1 expression in PSCS patients by the RT-PCR assay. RESULTS A total of 443 genes from the GSE11854 dataset were identified as DEGs, which were involved in BP associated with DNA replication, CC associated with chromosomal region, and MF associated with ATPase activity. These DEGs were primarily enriched in the TGF-β signaling pathway and spinal deformity. Further, LASSO regression suggested that 9 DEGs acted as the signature markers for somite formation. We discovered altogether 162 DEGs in PSCS patients, which were involved in BP associated with cardiac myofibril assembly and MF associated with structural constituent of muscle. However, these 162 DEGs were not significantly correlated with any pathways. Finally, COL27A1 was identified as the only intersected gene between the best predictors for somite formation and PSCS-related DEGs, which was significantly downregulated in PSCS patients. CONCLUSION This work sheds novel lights on DEGs related to the PSCS pathogenic mechanism, and COL27A1 is the possible therapeutic target for PSCS. Findings in this work may contribute to developing therapeutic strategies for PSCS.
Collapse
Affiliation(s)
- Zongshan Hu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yanjie Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
3
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
4
|
Balaji SM, Balaji P. Tracheostomy and mandibular distraction in acute sleep apnea. Indian J Dent Res 2019; 30:625-629. [PMID: 31745063 DOI: 10.4103/ijdr.ijdr_626_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe restriction of airway volume in the orofacial region, caused by temporomandibular joint (TMJ) ankylosis, may lead to obstructive sleep apnea (OSA). If the TMJ ankylosis is progressive, rarely, the caregivers may fail to notice the problem. Such patients may have only symptoms of snoring, daytime sleepiness, fatigue, inability to concentrate, and irritability. At times, emergency tracheostomy may be needed to increase the oxygen supply. Distraction osteogenesis (DO) is a less invasive surgical technique in the management of such OSA by correcting the reduced airway space. In DO, the angulation of the distractors and the pace of activation determine the success of the neo-generation of segments of bone. The formation of a well-corticated mandibular canal (MC) in the newly generated bone is an evidence of the success of the procedure. Such bilateral formation of the MC is not reported from this part of the world. We report a case of a 4-year-old boy who was struggling with OSA due to TMJ ankylosis. He was successfully treated by bilateral mandibular DO. The formation and cortication of the MC is discussed with emphasis on the neural regeneration.
Collapse
Affiliation(s)
- S M Balaji
- Balaji Dental and Craniofacial Hospital, Teynampet, Chennai, Tamil Nadu, India
| | - Preetha Balaji
- Balaji Dental and Craniofacial Hospital, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Dietrich EM, Theodora P, Antonia S, Georgios K, Esthelle N. Ultrastructural alterations of the inferior alveolar nerve in wistar rats after alendronate administration per os: hypothesis for the generation of the "numb chin syndrome". Histol Histopathol 2015. [DOI: 10.7243/2055-091x-2-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Shogen Y, Isomura ET, Kogo M. Evaluation of inferior alveolar nerve regeneration by bifocal distraction osteogenesis with retrograde transportation of horseradish peroxidase in dogs. PLoS One 2014; 9:e94365. [PMID: 24732938 PMCID: PMC3986082 DOI: 10.1371/journal.pone.0094365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/14/2014] [Indexed: 01/09/2023] Open
Abstract
Background Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function. Methods and Findings Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time. Conclusions We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects.
Collapse
Affiliation(s)
- Yosuke Shogen
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
- Unit of Dentistry, Osaka University Hospital, Suita, Japan
- * E-mail:
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, Suita, Japan
| |
Collapse
|