1
|
Deignan E, Alabassi A, Brandon S, Papini M, Hurtig M, Towler M. Partial coverage adhesive augmented sternal fixation and stabilization: A biomechanical analysis. J Biomech 2024; 177:112374. [PMID: 39509808 DOI: 10.1016/j.jbiomech.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Adhesive-augmented sternal fixation (AASF) has been investigated as an alternative to the clinical standard of cerclage wires; however, previous studies have focused on a full adhesive layer across the sternal midline, which acts as a barrier to bone healing. This study used a human cadaveric model to investigate if partial coverage AASF used in combination with wired fixation could provide adequate stability. Median sternotomies were performed on fifteen human cadaveric sterna. Three groups (n = 5) with varying adhesive coverage (50 %, 62.5 %, 75 %) of the sternal midline and traditional wiring were investigated. Cyclic lateral distraction loading of 10 N to 100 N was applied at 50 N/s. Every 30 cycles, the maximum load was increased by 100 N to a maximum of 500 N. Displacement was measured using transducers spanning the transection line at the manubrium, body, and xiphoid. Mean maximum total displacement (MMTD) for all groups was significantly below 2 mm (p < 0.001) with 1.49 mm ± 0.82 mm, 0.97 mm ± 0. 55 mm, and 0.67 mm ± 0.65 mm in the 50 %, 62.5 %, and 75 % groups respectively. MMTD in the 50 % group was significantly greater than MMTD in the 62.5 % and 75 % groups. AASF improved stability as coverage of the sternal surface with adhesive increased. Partial coverage of the sternal midline with adhesive may provide similar rigidity to a full layer while enabling earlier sternal ossification at the transection line compared to wiring alone.
Collapse
Affiliation(s)
- Emily Deignan
- University of Guelph, College of Engineering and Physical Sciences, Canada.
| | | | - Scott Brandon
- University of Guelph, College of Engineering and Physical Sciences, Canada.
| | - Marcello Papini
- Toronto Metropolitan University, Mechanical and Industrial Engineering, Canada.
| | - Mark Hurtig
- University of Guelph, Ontario Veterinary College, Canada.
| | - Mark Towler
- Toronto Metropolitan University, Department of Biomedical Engineering, Canada.
| |
Collapse
|
2
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
3
|
Bingol HB, Bender JC, Opsteen JA, Leeuwenburgh SC. Bone adhesive materials: From bench to bedside. Mater Today Bio 2023; 19:100599. [PMID: 37063249 PMCID: PMC10102013 DOI: 10.1016/j.mtbio.2023.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.
Collapse
Affiliation(s)
- Hatice B. Bingol
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- GATT Technologies BV, Nijmegen, the Netherlands
| | | | | | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Corresponding author.
| |
Collapse
|
4
|
Sidhu VPS, Bilwani F, Towler MR, Papini M. Adhesion of bioactive glass-based adhesive to bone. J Mech Behav Biomed Mater 2021; 126:105018. [PMID: 34864572 DOI: 10.1016/j.jmbbm.2021.105018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
Understanding the failure modes and the fracture resistance is critical in evaluating the performance of an adhesive for sternal fixation. In this paper, a fracture mechanics testing methodology was used to assess the adhesion of a bioactive glass-based adhesive to bovine bone in terms of a measured mode I critical strain energy release rate (GIC). Reinforced double cantilever beam (DCB) samples were observed to produce repeatable values of GIC. The measured GIC was found to increase significantly from 5.41 to 12.60 J/m2 with an increase in adhesive thickness from 390 to 990 μm because of the constraint from the two adherends regulating the plastic zone size ahead of the crack. The specimens failed cohesively in all cases demonstrating that there was good adhesion to bone, a condition necessary to restrict micromotion and thus provide rigid sternal fixation when used along with sternal wires. It was also found that when the bone was flooded with liquid during adhesive application a much lower GIC of between 0.69 and 1.15 J/m2 was measured. Overall, the results demonstrate that the fracture mechanics approach can be used to provide a quantitative measure of the adhesion of the bioactive glass-based adhesive to the bone and that the adhesive should only be applied to clean bone in a dry environment.
Collapse
Affiliation(s)
- Varinder Pal Singh Sidhu
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Faizan Bilwani
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark R Towler
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Marcello Papini
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Böker KO, Richter K, Jäckle K, Taheri S, Grunwald I, Borcherding K, von Byern J, Hartwig A, Wildemann B, Schilling AF, Lehmann W. Current State of Bone Adhesives-Necessities and Hurdles. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3975. [PMID: 31801225 PMCID: PMC6926991 DOI: 10.3390/ma12233975] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The vision of gluing two bone fragments with biodegradable and biocompatible adhesives remains highly fascinating and attractive to orthopedic surgeons. Possibly shorter operation times, better stabilization, lower infection rates, and unnecessary removal make this approach very appealing. After 30 years of research in this field, the first adhesive systems are now appearing in scientific reports that may fulfill the comprehensive requirements of bioadhesives for bone. For a successful introduction into clinical application, special requirements of the musculoskeletal system, challenges in the production of a bone adhesive, as well as regulatory hurdles still need to be overcome. In this article, we will give an overview of existing synthetic polymers, biomimetic, and bio-based adhesive approaches, review the regulatory hurdles they face, and discuss perspectives of how bone adhesives could be efficiently introduced into clinical application, including legal regulations.
Collapse
Affiliation(s)
- Kai O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Katharina Richter
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
| | - Katharina Jäckle
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Ingo Grunwald
- Industrial and Environmental Biology, Hochschule Bremen—City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany;
| | - Kai Borcherding
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
| | - Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria;
- Faculty of Life Science, University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Andreas Hartwig
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany; (K.R.); (K.B.); (A.H.)
- Department 2 Biology/Chemistry, University of Bremen, Leobener Straße 3, 28359 Bremen, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, University Hospital Jena, 07747 Jena, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075 Göttingen, Germany; (K.J.); (S.T.); (A.F.S.); (W.L.)
| |
Collapse
|
6
|
Mehrvar C, Kuzyk P, Shamlou J, Safir O, Zalzal P, Alhalawani A, Towler MR, Papini M. Novel adhesives for distal radius fixation: A biomechanical analysis. J Mech Behav Biomed Mater 2018; 89:99-106. [PMID: 30267994 DOI: 10.1016/j.jmbbm.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
Abstract
Wrist fractures can be difficult to treat due to advanced age of the patient, medical co-morbidities, and comminution of the bone. This study examines the effectiveness of two injectable glass polyalkenoate cements (GPCs), derived from two different glasses (A and B), as minimally invasive treatments for distal radius fractures. Twenty-seven fresh cadaveric radial pairs were tested either in compressive fatigue or to quasi-static compressive failure. The radii tested to failure had one pair fixated with a GPC while the other was left intact. The radii tested under fatigue had one pair fixated with a GPC and the other with a volar locking plate. A wedge osteotomy was used to simulate a severely comminuted fracture. When loaded to failure, the radii fixated with a GPC made from glass A or B were found to be, respectively, at least 57% and 62% as strong as their intact biological pair (95% Confidence Interval, Lower). Using a paired t-test, the radii fixated with either adhesive were found to be significantly stiffer than their biological pairs fixated with a volar locking plate for all cycles of fatigue loading. The adhesives under investigation demonstrate promise as treatment for distal radius fractures. In vivo investigations are warranted to determine the effect that the adhesives have on the bone remodelling process.
Collapse
Affiliation(s)
- Cina Mehrvar
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Paul Kuzyk
- Division of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jamshied Shamlou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Oleg Safir
- Division of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Paul Zalzal
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Oakville Trafalgar Memorial Hospital, Oakville, ON, Canada
| | - Adel Alhalawani
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Mark R Towler
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Marcello Papini
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|