1
|
Fuchs K, Janek T, Karpl M, Władyczyn A, Ejfler J, John Ł. Enhanced Antimicrobial Efficacy of Sulfones and Sulfonamides via Cage-Like Silsesquioxane Incorporation. Inorg Chem 2025; 64:6460-6469. [PMID: 40133078 PMCID: PMC11979884 DOI: 10.1021/acs.inorgchem.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
This work introduces a novel class of hybrid antimicrobial agents by integrating sulfone and sulfonamide functionalities with polyhedral oligomeric silsesquioxanes (POSSs). By employing efficient synthetic protocols, we have successfully prepared both sulfone (ethylvinylsulfone-POSS and phenylethylsulfone-POSS) and sulfonamide (benzenesulfonamide-POSS, p-toluenesulfonamide-POSS, 3-fluorobenzenesulfonamide-POSS, and 2-naphthalenesulfonamide-POSS) derivatives with high yields (73-90%). All derivatives were examined using Fourier transform infrared spectroscopy, multinuclear (1H, 13C, 19F, and 29Si) NMR spectroscopy, MALDI-ToF MS spectrometry, and elemental analysis. Additionally, the crystal structure of the p-toluenesulfonamide-POSS hybrid was revealed. The unique cage-like POSS structure not only imparts enhanced thermal and chemical stability, a common feature of silsesquioxane-based hybrids, but also boosts the lipophilic character of these compounds, thereby facilitating their interaction with microbial membranes. This interaction, likely resulting in membrane disruption and cell lysis, translates into potent antimicrobial activity (against Escherichia coli, Pseudomonas aeruginosa, Enterococcus hirae, Staphylococcus aureus, and Candida albicans)─especially against Gram-positive bacteria─at remarkably low minimum inhibitory concentrations in the range from 125 to 3000 μM. In turn, E. hirae and S. aureus were more susceptible compared to Gram-negative bacteria and C. albicans. The strategic incorporation of POSSs into these sulfur-based moieties represents a significant breakthrough, opening new avenues for the development of advanced antimicrobial coatings and therapeutic agents in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Kamila Fuchs
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Tomasz Janek
- Department
of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego, 51-630 Wrocław, Poland
| | - Mateusz Karpl
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Anna Władyczyn
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jolanta Ejfler
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Łukasz John
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Mankaev BN, Karlov SS. Metal Complexes in the Synthesis of Biodegradable Polymers: Achievements and Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6682. [PMID: 37895663 PMCID: PMC10608263 DOI: 10.3390/ma16206682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
This review describes recent advances in the synthesis of homopolymers of lactide and related cyclic esters via ring-opening polymerization (ROP) in the presence of metal complexes based on group 1, 2, 4, 12, 13 and 14 metals. Particular attention is paid to the influence of the initiator structure on the properties of the obtaining homo- and copolymers. Also, a separate chapter is devoted to the study of metal complexes in the synthesis of copolymers of lactide and lactones. This review highlights the efforts made over the last ten years or so, and shows how main-group metals have received increasing attention in the field of the polymerization of lactide and related cyclic esters.
Collapse
Affiliation(s)
- Badma N. Mankaev
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, 119991 Moscow, Russia
| | - Sergey S. Karlov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
3
|
Wytrych P, Utko J, Stefanski M, Kłak J, Lis T, John Ł. Synthesis, Crystal Structures, and Optical and Magnetic Properties of Samarium, Terbium, and Erbium Coordination Entities Containing Mono-Substituted Imine Silsesquioxane Ligands. Inorg Chem 2023; 62:2913-2923. [PMID: 36716237 PMCID: PMC9930112 DOI: 10.1021/acs.inorgchem.2c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mono-substituted cage-like silsesquioxanes of the T8-type can play the role of potential ligands in the coordination chemistry. In this paper, we report on imine derivatives as ligands for samarium, terbium, and erbium cations and discuss their efficient synthesis, crystal structures, and magnetic and optical properties. X-ray analysis of the lanthanide coordination entities [MCl3(POSS)3]·2THF [M = Er3+ (3), Tb3+ (4), Sm3+ (5)] showed that all three compounds crystallize in the same space group with similar lattice parameters. All compounds contain an octahedrally coordinated metal atom, and additionally, 3 and 5 structures are strictly isomorphous. However, surprisingly, there are two different molecules in the crystal structure of the terbium coordination entity 4, monomer (sof 65%) and dimer (sof 35%), with one and two metal centers. Absorption measurements of the investigated materials recorded at 300 K showed that regardless of the lanthanide involved, their energy band gap equals 2.7 eV. Moreover, the analogues containing Tb3+ and Sm3+ exhibit luminescence typical of these rare earth ions in the visible and infrared spectral range, while the compound with Er3+ does not generate any emission. Direct current variable-temperature magnetic susceptibility measurements on polycrystalline samples of 3-5 were performed between 1.8 and 300 K. The magnetic properties of 3 and 4 are dominated by the crystal field effect on the Er3+ and Tb3+ ions, respectively, hiding the magnetic influence between the magnetic cations of adjacent molecules. Complex 5 exhibits a nature typical for the paramagnetism of the samarium(III) cation.
Collapse
Affiliation(s)
- Patrycja Wytrych
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Józef Utko
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Mariusz Stefanski
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, 50-422Wrocław, Poland
| | - Julia Kłak
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland
| | - Łukasz John
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383Wrocław, Poland,
| |
Collapse
|
4
|
Piec K, Wątły J, Jerzykiewicz M, Kłak J, Plichta A, John Ł. Mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride as a multi-donor N,O-type ligand in copper(ii) coordination chemistry: synthesis and structural properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj05425a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, we report on the synthesis of novel copper(ii) complexes containing a multi-donor N,O-type ligand based on mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Joanna Wątły
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Julia Kłak
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Andrzej Plichta
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
5
|
Janeta M, Lis T, Szafert S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro-Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low-Pressure CO 2. Chemistry 2020; 26:13686-13697. [PMID: 33463802 DOI: 10.1002/chem.202002996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Indexed: 01/13/2023]
Abstract
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
6
|
Piec K, Kostera S, Jędrzkiewicz D, Ejfler J, John Ł. Mono-substituted amine-oligosilsesquioxanes as functional tools in Pd( ii) coordination chemistry: synthesis and properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01568g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unexpected reaction between mono-functionalized amino-POSS and palladium acetate (different from the well-known pathway between a classical amine and a palladium salt) leads to novel coordination entities.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Sylwia Kostera
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Jolanta Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
7
|
Kulakova AN, Bilyachenko AN, Levitsky MM, Khrustalev VN, Korlyukov AA, Zubavichus YV, Dorovatovskii PV, Lamaty F, Bantreil X, Villemejeanne B, Martinez J, Shul'pina LS, Shubina ES, Gutsul EI, Mikhailov IA, Ikonnikov NS, Tsareva US, Shul'pin GB. Si 10Cu 6N 4 Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorg Chem 2017; 56:15026-15040. [PMID: 29185729 DOI: 10.1021/acs.inorgchem.7b02320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis, composition, and catalytic properties of a new family of hexanuclear Cu(II)-based phenylsilsesquioxanes are described here. Structural studies of 17 synthesized compounds revealed the general principle underlying their molecular topology: viz., a central metal oxide layer consisting of two Cu3 trimers is coordinated by two cyclic [PhSiO1.5]5 siloxanolate ligands to form a skewed sandwich architecture with the composition [(PhSiO1.5)10(CuO)6]2+. In addition to this O ligation by the siloxanolate rings, two opposite copper ions are additionally coordinated by the nitrogen atoms of corresponding N ligand(s), such as 2,2'-bipyridine (compounds 1-9), 1,10-phenanthroline (compounds 10-13), mixed 1,10-phenanthroline/2,2'-bipyridine (compound 14), or bathophenanthroline (compounds 15-17). Finally, the charge balance is maintained by two HO- (compounds 1-7, 10-13, and 15-17), two H3CO- (compound 8), or two CH3COO- (compounds 9 and 14) anions. Complexes 1 and 10 exhibited a high activity in the oxidative amidation oxidation of alcohols. Compounds 1, 10, and 15 are very efficient homogeneous catalysts in the oxidation of alkanes and alcohols with peroxides.
Collapse
Affiliation(s)
- Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Benoît Villemejeanne
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Igor A Mikhailov
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia
| | - Nikolay S Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Ul'yana S Tsareva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Georgiy B Shul'pin
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow, Russia
| |
Collapse
|
8
|
Luo Z, Chaemchuen S, Zhou K, Verpoort F. Ring-Opening Polymerization of l-Lactide to Cyclic Poly(Lactide) by Zeolitic Imidazole Framework ZIF-8 Catalyst. CHEMSUSCHEM 2017; 10:4135-4139. [PMID: 28925025 DOI: 10.1002/cssc.201701438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/17/2017] [Indexed: 06/07/2023]
Abstract
The catalytic activity of ZIF-8 in the ring-opening polymerization of l-lactide without solvents or cocatalysts is presented for the first time. Two different synthetic strategies have been applied for synthesizing ZIF-8, either under solvothermal condition or by spray-drying procedure. Their catalytic activities are found to be correlating with the presence of open active sites in ZIF-8 structure. The structural defects that afford active acid and basic sites are supposed to cooperatively catalyze the reaction. ZIF-8 assembled by spray-drying technique, displays a superior catalytic activity at temperature of 160 °C, leading to the formation of high molecular weight cyclic polylactide. The ZIF-8 catalysts could be recycled and reused without any significant loss of catalytic activity.
Collapse
Affiliation(s)
- Zhixiong Luo
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, P. R. China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P .R. China
- Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Somboon Chaemchuen
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, P. R. China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P .R. China
| | - Kui Zhou
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, P. R. China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P .R. China
- Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation
| |
Collapse
|
9
|
Wang X, Zhao KQ, Al-Khafaji Y, Mo S, Prior TJ, Elsegood MRJ, Redshaw C. Organoaluminium Complexes Derived from Anilines or Schiff Bases for the Ring-Opening Polymerization of ε-Caprolactone, δ-Valerolactone andrac-Lactide. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Wang
- College of Chemistry and Materials Science; Sichuan Normal University; 610066 Chengdu China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science; Sichuan Normal University; 610066 Chengdu China
| | - Yahya Al-Khafaji
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX Hull U.K
| | - Shangyan Mo
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX Hull U.K
| | - Timothy J. Prior
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX Hull U.K
| | - Mark R. J. Elsegood
- Chemistry Department; Loughborough University; LE11 3TU Loughborough Leicestershire U.K
| | - Carl Redshaw
- College of Chemistry and Materials Science; Sichuan Normal University; 610066 Chengdu China
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX Hull U.K
| |
Collapse
|
10
|
Janeta M, John Ł, Ejfler J, Lis T, Szafert S. Multifunctional imine-POSS as uncommon 3D nanobuilding blocks for supramolecular hybrid materials: synthesis, structural characterization, and properties. Dalton Trans 2016; 45:12312-21. [DOI: 10.1039/c6dt02134d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imino-functionalized cage-like octasilsesquioxanes provide unique examples of the 3D supramolecular network and their relationship to the assembly of tunable materials from nanobuilding blocks.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Jolanta Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Tadeusz Lis
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
11
|
Pérez Y, del Hierro I, Zazo L, Fernández-Galán R, Fajardo M. The catalytic performance of metal complexes immobilized on SBA-15 in the ring opening polymerization of ε-caprolactone with different metals (Ti, Al, Zn and Mg) and immobilization procedures. Dalton Trans 2015; 44:4088-101. [DOI: 10.1039/c4dt03385j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of heterogeneous catalysts has been prepared by employing different strategies.
Collapse
Affiliation(s)
- Yolanda Pérez
- Departamento Biología y Geología
- Física y Química Inorgánica (E.S.C.E.T.)
- Universidad Rey Juan Carlos
- Madrid
- Spain
| | - Isabel del Hierro
- Departamento Biología y Geología
- Física y Química Inorgánica (E.S.C.E.T.)
- Universidad Rey Juan Carlos
- Madrid
- Spain
| | - Lydia Zazo
- Departamento Biología y Geología
- Física y Química Inorgánica (E.S.C.E.T.)
- Universidad Rey Juan Carlos
- Madrid
- Spain
| | - Rafael Fernández-Galán
- Departamento Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
- Campus Universitario de Ciudad Real
| | - Mariano Fajardo
- Departamento Biología y Geología
- Física y Química Inorgánica (E.S.C.E.T.)
- Universidad Rey Juan Carlos
- Madrid
- Spain
| |
Collapse
|