1
|
Hazra S, Deb M, Singh J, Elias AJ. Picolinamide as a Directing Group on Metal Sandwich Compounds: sp2 C–H Bond Activation and sp3 C–H Bond Oxidation. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susanta Hazra
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Mayukh Deb
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Jatinder Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Anil J. Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Yu Y, Hu Z, Chen Z, Yang J, Gao H, Chen Z. Organically-modified magnesium silicate nanocomposites for high-performance heavy metal removal. RSC Adv 2016. [DOI: 10.1039/c6ra20181d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A disulfide-grafted polyethyleneimine (PES)@Mg2SiO4composite was synthesized, characterized, and used successfully to remove heavy metals from wastewater.
Collapse
Affiliation(s)
- Yichang Yu
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Zhangjun Hu
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Zhenyong Chen
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Jiaxiang Yang
- Key Laboratory of Functional Inorganic Materials of Anhui Province
- Anhui University
- Hefei 230039
- PR China
| | - Hongwen Gao
- State Key Laboratory of Pollution Control and Resource Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Zhiwen Chen
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- PR China
| |
Collapse
|
3
|
Chemistry of the highly stable hindered cobalt sandwich compound (η5-Cp)Co(η4-C4Ph4) and its derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zheng ZJ, Wang D, Xu Z, Xu LW. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein J Org Chem 2015; 11:2557-76. [PMID: 26734102 PMCID: PMC4685768 DOI: 10.3762/bjoc.11.276] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.
Collapse
Affiliation(s)
- Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Ding Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| |
Collapse
|
5
|
Singh J, Deb M, Elias AJ. Palladacycles Based on 8-Aminoquinoline Carboxamides of Cobalt and Iron Sandwich Compounds and a New Method to α-Alkylate Cp Rings of Metal Sandwich Carboxamides. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz
Khas, New Delhi 110016, India
| | - Mayukh Deb
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz
Khas, New Delhi 110016, India
| | - Anil J. Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz
Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Synthesis and Heterogenization of Siloxane Functionalized Cobalt Complex: Potential Catalyst for Oxidation of Alcohols. Catal Letters 2015. [DOI: 10.1007/s10562-015-1492-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Singh J, Kumar D, Singh N, Elias AJ. New Chiral Palladacycles from an Unprecedented Cyclopalladation of Cyclobutadiene-Bound Phenyl Groups of Cobalt Sandwich Compounds. Organometallics 2014. [DOI: 10.1021/om500004n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dheeraj Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Nem Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Anil J. Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Abd-El-Aziz AS, Agatemor C, Etkin N. Sandwich complex-containing macromolecules: property tunability through versatile synthesis. Macromol Rapid Commun 2014; 35:513-59. [PMID: 24474608 DOI: 10.1002/marc.201300826] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Sandwich complexes feature unique properties as the physical and electronic properties of a hydrocarbon ligand or its derivative are integrated into the physical, electronic, magnetic, and optical properties of a metal. Incorporation of these complexes into macromolecules results in intriguing physical, electrical, and optical properties that were hitherto unknown in organic-based macromolecules. These properties are tunable through well-designed synthetic strategies. This review surveys many of the synthetic approaches that have resulted in tuning the properties of sandwich complex-containing macromolecules. While the past two decades have seen an ever-growing number of research publications in this field, gaps remain to be filled. Thus, we expect this review to stimulate research interest towards bridging these gaps, which include the insolubility of some of these macromolecules as well as expanding the scope of the sandwich complexes.
Collapse
Affiliation(s)
- Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | | | | |
Collapse
|
9
|
Keshav K, Kumar D, Elias AJ. Synthesis, spectral, and structural studies of porphyrins having sterically hindered [η(5)-CpCo(η(4)-C4Ph4)] cobalt sandwich units at the meso positions. Inorg Chem 2013; 52:12351-66. [PMID: 24152207 DOI: 10.1021/ic401099c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthesis, spectral, and structural studies of the first examples of porphyrins substituted at the meso positions with sterically hindered η(5)-CpCo(η(4)-C4Ph4) cobalt sandwich units are described. The novel dipyrromethane derived cobalt sandwich compound {η(5)-[(C4H4N)2CH]C5H4}Co(η(4)-C4Ph4) 1, as well as its parent aldehyde, η(5)-[C5H4(CHO)]Co(η(4)-C4Ph4), were used in the synthesis of porphyrins having one or two η(5)-CpCo(η(4)-C4Ph4) groups at their meso positions. 1,9-Diformyldipyrromethane derived η(5)-CpCo(η(4)-C4Ph4) 2 was synthesized using dipyrromethane 1 under Vilsmeier conditions. A reaction of 2 with unsubstituted dipyrromethane under basic conditions in the presence of Pd(C6H5CN)2Cl2 yielded an A-type palladium coordinated porphyrin 3 [where A = η(5)-CpCo(η(4)-C4Ph4)]. A similar reaction of 2 with meso aryl and ferrocenyl-substituted dipyrromethanes yielded trans-AB type palladium coordinated porphyrins 4-6 [where A = η(5)-CpCo(η(4)-C4Ph4) and B = 4-tert-butylphenyl 4, ferrocenyl 5, and pentafluorophenyl 6]. Reactions of 2 with 5-ferrocenyl dipyrromethane under the same reaction conditions in the presence of Ni(acac)2 and Zn(OAc)2 gave the trimetallic nickel(II) and zinc(II) complexed trans-AB type porphyrins 7 and 8 having both cobalt and iron sandwich units at the meso positions. Crystal structure of the Pd(II) porphyrin 5 and nickel(II) porphyrin 7 showed nonplanar structures having distinct ruffle type distortion of the porphyrin ring. Demetalation of the zinc(II) trans-AB type porphyrin 8 in the presence of trifluoroacetic acid gave the metal free base porphyrin 9. Reactions of the cobalt sandwich aldehyde [(η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically hindered dipyrromethane derivatives under acid-catalyzed condensation reactions gave trans-A2B2 type porphyrins [where A = η(5)-CpCo(η(4)-C4Ph4) and B = pentafluorophenyl, 10 mesityl 11]. In contrast, reactions of [η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically unhindered meso-4-tert-butylphenyl dipyrromethane resulted in both AB3 12 and cis-A2B2 13 type porphyrins [where A = η(5)-CpCo(η(4)-C4Ph4) and B = (4-tert-butylphenyl] as a result of scrambling. The new porphyrin derivatives have been structurally characterized, and their spectral and electrochemical features were determined.
Collapse
Affiliation(s)
- Karunesh Keshav
- Department of Chemistry, Indian Institute of Technology , Delhi, Hauz Khas, New Delhi, 110016, India
| | | | | |
Collapse
|